首页 理论教育 认知无线电的关键技术优化方案

认知无线电的关键技术优化方案

时间:2023-06-30 理论教育 版权反馈
【摘要】:在认知无线电中,频谱检测技术不仅仅在“频谱空洞”的搜寻和判定中起关键作用,在系统的通信过程中,它还需要负责频谱状态的实时监测。第二和第三部分是认知无线电可利用的频谱。目前各种基于认知无线电的频谱管理思想和管理规则仍在研究之中。

认知无线电的关键技术优化方案

1.频谱检测技术

认知无线电技术能够感知并分析特定区域的频段,找出适合通信的“频谱空洞”,利用某些特定的技术和处理,在不影响已有通信系统的前提下进行工作。从认知无线电工作流程(如图8-20所示),可以看到,为了在某个地域上应用认知无线电技术,首先对该地无线信道环境的感知,即频谱检测和“空洞”搜寻与判定。

如果将待查的频段分为三种不同的情况:黑空,存在高功率的干扰;灰空,存在低功率的干扰;白空,仅存在环境噪声量,包括热噪声、瞬时反射、脉冲噪声等。那么频谱检测的任务就是查找适合认知无线电业务的白空,同时对工作频段在黑空(或灰空)和白空之间的转变进行监测。

978-7-111-40321-0-Chapter08-23.jpg

图8-20 认知无线电的工作流程

在认知无线电技术中,进行频谱检测即对所观察的频段进行干扰温度的估计。干扰温度可以看做是频段内的干扰功率谱密度,它的设定是用来量化和管理无线环境中的干扰问题。针对经过谱估计得到的干扰温度,可以给出干扰温度界限。通过干扰温度界限可以对观测的“频谱空洞”进行选择,超过界限的干扰或其他噪声都是不符合通信要求的频谱。

通常在接收端进行干扰温度的测量,并搜寻“频谱空洞”,将获得的信息通过系统预设的反馈信道传送至发送端,并据此进行发射功率控制处理和动态频谱管理;在发射端和接收端也可以采用自适应的波束成型技术,进一步补充的干扰控制。

在认知无线电感知无线环境的工作中,如何进行高效的无线频谱估计和分析是关键技术之一。常用的频谱分析算法是多窗谱估计算法。该算法使用多个离散扁球体序列作为正交窗函数。经过这种窗函数滤波后的信号在有限采样点时的傅里叶变换具有极佳的能量集中特性,是一种接近最优的方法。这种特性使得在降低频谱估计的方差时不会影响估计的偏差,因而具有较好的计算性能和应用价值。

在认知无线电领域进行干扰温度估计时,为了能够更好地感知待测区域内的干扰温度,在频谱分析算法中引入了空间的概念,通常会将大量的传感器分布在该区域内,进行无线信号的接收。这些传感器可以是指专门设置的接收天线,也可以是认知无线电系统的各个无线用户终端。通过这些传感器进行无线环境的探测,可以区分无线信号在空间上的不同和差异。针对来自多个传感器测量得到的多组接收信号,经过恰当的频谱分析算法,即可得到对应于特定空间、时间和频段的干扰温度估计值。将该干扰温度估计量和设定的干扰温度门限比较,若在连续的几个时段内均小于门限要求,即可认为出现了“频谱空洞”。

在认知无线电中,频谱检测技术不仅仅在“频谱空洞”的搜寻和判定中起关键作用,在系统的通信过程中,它还需要负责频谱状态的实时监测。对频谱的监测一方面可以搜集无线环境的统计资料,为高层的频谱管理提供辅助;另一方面进行的实时干扰温度估计为系统的发射端进行功率控制提供必要的参数支持。在某些情况下,监测频谱也能够比较准确地判定射频信号碰撞事件,使认知无线电系统能够尽快进行主动退避,避免过多地影响原有授权用户的通信。

2.自适应频谱资源分配技术

由于正交频分复用(OFDM)系统是目前公认的比较容易实现频谱资源控制的传输方式,该调制方式可以通过频率的组合或裁剪实现频谱资源的充分利用,可以灵活控制和分配频谱、时间、功率、空间等资源,自适应频谱资源分配的关键技术主要有:载波分配技术、子载波功率控制技术、复合自适应传输技术。

(1)载波分配技术

认知无线电具有感知无线环境的能力。通过对干扰温度的测量,可以确定“频谱空洞”。子载波分配就是根据用户的业务和服务质量要求,分配一定数量的频率资源,由于检测到的“空洞”资源是不确定的,带有一定的随机性。OFDM系统具有裁剪功能,通过子载波(子带)的分配,将一些不规律和不连续的频谱资源进行整合,按照一定的公平原则将频谱资源分配给不同的用户,实现资源的合理分配和利用。(www.xing528.com)

(2)子载波功率控制技术

认知无线电中利用已授权频谱资源的前提是不影响授权用户的正常通信。为此,非授权用户必须控制其发射功率,避免给其他授权用户造成干扰。功率控制算法在经典的“注水”算法的基础上,有一系列的派生算法。这些算法追求的是功率控制的完备性和收敛性,既要不造成干扰又要使认知无线电有较好的通过率,且达到实时性的要求。事实上功率控制算法和子载波分配算法是密不可分的。这是因为在判断某子载波是否可以使用时,就要对其历史(授权状况)和现状(空间距离、衰落)做出判断,同时还需要计算出可分配的功率大小。

(3)复合自适应传输技术

该技术将OFDM和认知无线电思想以及一系列自适应传输技术结合,从而达到无线电资源的合理分配和充分利用。为了寻求保证服务质量和最大通过率下的最佳工作状态,需综合应用动态子载波分配技术、自适应子载波的功率分配技术、自适应调制解调技术以及自适应编码技术等一系列自适应技术,形成优化的自适应算法。根据子载波的干扰温度,通过自适应地调整通信终端的工作参数,从而达到最佳工作状态。设计合理的自适应传输技术可以大幅提高频谱资源利用率和通信性能。

3.认知无线电下的频谱管理

具有认知无线电功能的无线用户在非授权状况下使用频率,必将引起无线电管理部门的注意,并且必定会力求将这种对频率的使用纳入其管理之下。从提高频谱利用效率的角度出发,不应该压制基于认知功能的非授权频谱使用。好的解决方法是改变频谱管理思想和频谱管理规则,使其适应用户的需求和技术的发展。

有研究者提出对频谱划分的新设想:依照频谱应用状况以及干扰的影响,对频谱划分三个等级:严格分配管理(不可干扰)、在一定程度上可供非授权使用(可有一定干扰)、无限制的非授权使用。在现阶段,绝大多数频谱为第一等级,即按照严格分配来进行管理,因而频谱利用率较低。新的频谱管理思想和规则应该使第一等级频谱所占的范围缩小,第二和第三等级频谱所占的范围扩大,以此来提高频谱利用率。这样将频谱分为三部分,第一部分非授权用户不可占用,第二部分可适当占用,第三部分可以不受限制占用。第二和第三部分是认知无线电可利用的频谱。目前各种基于认知无线电的频谱管理思想和管理规则仍在研究之中。

总结上述定义,CR应该具备以下两个主要特征。

(1)认知能力

认知能力使CR能够从其工作的无线环境中捕获或者感知信息,从而可以标识特定时间和空间的未使用频谱资源(也称为频谱空洞),并选择最适当的频谱和工作参数。这一任务包括3个主要的步骤:频谱感知、频谱分析和频谱判决。频谱感知的主要功能是监测可用频段,检测频谱空洞;频谱分析估计频谱感知获取的频谱空洞的特性;频谱判决根据频谱空洞的特性和用户需求选择合适的频段传输数据。

(2)重构能力

重构能力使得CR设备可以根据无线环境动态编程,从而允许CR设备采用不同的无线传输模式收发数据。可以重构的参数包括工作频率、调制方式、发射功率和通信协议等。

重构的核心思想是在不对频谱授权用户产生有害干扰的前提下,利用授权系统的空闲频谱提供可靠的通信服务。一旦该频段被授权用户使用,CR有两种应对方式:一是切换到其他空频段通信;二是继续使用该频段,但降低发射功率或者改变调制方案,以避免对授权用户造成明显干扰。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈