面向电力需求侧的大数据技术,不仅仅是电力需求侧管理领域在技术上的进步,更是在发展理念、管理体制和技术路线等方面的重大变革,可为未来智能用电技术的广泛推广应用提供坚实的数据基础。此外,电力大数据的有效应用可以面向行业内外提供大量的高附加值的内容增值服务。我国电力需求侧管理的发展,亟须充分利用现有信息化系统和大数据技术,探索目前瓶颈问题的解决方法,挖掘海量数据蕴藏的价值。
1)数据融合存在障碍
由于用户侧多个信息化系统在建设初期缺乏统一规划,开发厂商根据各业务部门的需求独立开发,导致数据结构不统一、同种数据重复存储、统计计算模型不一致、时间颗粒度难统一等一系列问题,难以形成全面的数据共享,与其他专业部门的系统存在数据壁垒。数据融合是大数据分析的基础,打破数据壁垒,实现信息共享是大数据应用的关键。数据共享不畅,数据集成程度不够。大数据技术的本质是从关联复杂的数据中挖掘知识,提升数据价值,单一业务、类型的数据即使体量再大,缺乏共享集成,其价值就会大打折扣。目前电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储且不一致的现象较为突出。
大数据在风电领域的应用前景看起来很美,但当前存在的问题是,将风机、风场的数据汇集起来并非易事。这些数据分散在风机制造商、风场业主、系统运营商和运维服务商等多个环节,他们能从这些数据中得到利益却无法做到合理分配,所以,有些利益相关方宁愿不分享这些数据。
2)数据质量参差不齐
系统建设之前对档案质量管控不足,统计数据在颗粒度、维度、统计方式、完整性、一致性和准确性等方面千差万别,历史数据难以收集和整理。此外,部分数据尚需手动输入或修正,采集效率和准确度还有所欠缺。数据质量的高低、数据管控能力的强弱直接影响大数据分析的准确性和实时性。
目前,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,行业中企业缺乏完整的数据管控策略、组织以及管控流程。
3)硬件设备承载力有待提升(www.xing528.com)
近些年,电力数据呈爆发式增长,现有的系统架构和硬件设备只能够满足日常业务的处理要求,用电侧信息化系统对数据储存的颗粒度小,而且存储时间要求长,这对其数据存储和处理能力、数据交换能力、信息网络传输能力以及数据展示能力都提出更高要求。需要对现行硬件及时升级改造,提高系统运行效率和稳定性,支撑大数据分析工作。
承载能力不足,基础设施亟待完善。电力数据储存时间要求以及海量电力数据的爆发式增长对IT基础设施提出了更高的要求。目前电力企业虽大多已建成一体化企业级信息集成平台,能够满足日常业务的处理要求,但其信息网络传输能力、数据存储能力、数据处理能力、数据交换能力、数据展现能力以及数据互动能力都无法满足电力大数据的要求,尚需进一步加强。
4)隐私保护和信息安全面临挑战
电力需求侧大数据必然会涉及众多用户的隐私,由于目前用户数据的收集、存储、管理与使用等均缺乏规范,更缺乏监管,主要依靠企业的自律保护隐私,因此对信息安全也提出了更高的要求。电力企业地域覆盖范围极广,各类防护体系建设不平衡,信息安全水平不一致,因此亟须从技术手段和政策法规两个层面解决用户隐私保护和信息安全面临的挑战。
防御能力不足,信息安全面临挑战。电力大数据由于涉及众多电力用户的隐私,对信息安全也提出了更高的要求。电力企业地域覆盖范围极广,各单位防护体系建设不平衡,信息安全水平不一致,特别偏远地区单位防护体系尚未全面建立,安全性有待提高。行业中企业的安全防护手段和关键防护措施也需要进一步加强,从目前的被动防御向多层次、主动防御转变。
5)相关人才欠缺,专业人员供应不足
大数据是一个崭新的事业,电力大数据的发展需要新型的专业技术人员,如大数据处理系统管理员、大数据处理平台开发人员、数据分析员和数据科学家等。而当前行业内外此类技术人员的缺乏将会成为影响电力大数据发展的一个重要因素。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。