首页 理论教育 钎缝组织中的化合物生成的介绍

钎缝组织中的化合物生成的介绍

时间:2023-06-29 理论教育 版权反馈
【摘要】:图1-22 用Cu-Sb76钎料在660℃钎焊铜时的界面结构 Fig.1-22 The interface structure as Cu brazed by filler metal Cu-Sb76 at 660℃用Cu-Sb32共晶合金[w=32%]作钎料来钎焊铜合金是一个不错的选择。它于645℃熔化,是一个难得的中温铜钎料。此外,这种化合物生成时或多或少以笋状方式生长,它像钉子一样嵌入钎缝,更增加了钎缝的强度。图1-24 用纯Sn钎焊铜丝时Cu6Sn5(η相)在钎缝中生长的情况 Fig.1-24 The growth of Cu6Sn5 (η)phase of two copper wires soldered by pure tin at 350℃for 10s

钎缝组织中的化合物生成的介绍

钎料中一个组元如果含量较大又能与母材生成金属间化合物,则在钎缝中会出现这些化合物的特征。如果这些金属间化合物是固液异分的,这些化合物在钎焊条件下(作用时间不过十数秒),常常会呈笋状生长(见图1-13)[19]。在用纯锡或含Sn量较高的锡合金钎料钎焊铜、银、铁、钴、镍等时,均可看到这种生长方式。但是在温度较低、反应时间较长的情况下,例如超过5min,则化合物往往又会呈扇状生长[29]。

钎料中一个主要成分组元与母材生成固液同分化合物时,这个化合物往往以层状或连片地生长[19]。图1-22所示为用Cu-Sb76钎料在660℃钎焊铜时的界面结构。图1-23所示为Cu-Sb系合金相图。图1-22的下方是母材铜,由于Sb能溶入Cu形成固溶体,在金相照片中可以看到与母材接壤处形成一条颜色稍深的均匀固溶体带α;在固熔体带的上方还可以看到颜色又稍深一些的带,经能谱分析证明,它是以固液同分化合物Cu3Sb为主的β相。β相的上方是β相和Sb形成的共晶。由于Cu含量稍过剩,照片显示的是一个亚共晶组织,共晶中点缀有枝状的β相。显然,照片显示的是钎焊条件下的非平衡结构。上述说明固液同分化合物的生长是采取平面层状的方式,这对钎焊来说并不是一个好的现象。

978-7-111-57708-9-Chapter01-26.jpg

图1-22 用Cu-Sb76钎料在660℃钎焊铜时的界面结构 Fig.1-22 The interface structure as Cu brazed by filler metal Cu-Sb76 at 660℃

用Cu-Sb32共晶合金[w(Sb)=32%]作钎料来钎焊铜合金是一个不错的选择。它于645℃熔化,是一个难得的中温铜钎料。和Cu-P8.3共晶钎料(熔化温度为714℃)很相似,它们分别是由固液同分化合物Cu3Sb或Cu3P与铜形成的共晶合金。本来这些固液同分化合物很脆,又呈层状,钎焊接头强度会是很差的,但是由于它们在钎焊过程中能与Cu迅速形成组成很宽的固溶体,使化合物层降至极低,甚至消失,这才使得这些钎料合金臻于实用。在另外一些情况下,就不那么好了,例如用含P的钎料钎焊铁合金,用镉基钎料钎焊铜合金,因为它们不能与母材生成组成很宽的固溶体,这时固液同分化合物的脆性便充分显露,使接头的强度很低。

固液同分化合物往往具有独立和完整的晶格,有盐的某些通性,如性脆、导电性差、热导率较纯金属低等,特别在钎焊时常形成层状或连片结构,这就使得在选择钎料时,需要特别注意避免生成这类化合物,除非这些化合物能溶入母材,形成组成很宽的固溶体。(www.xing528.com)

978-7-111-57708-9-Chapter01-27.jpg

图1-23 Cu-Sb系合金相图 Fig.1-23 Phase diagram of Cu-Sb alloys

在固液异分化合物存在时情况则有很大不同,因为这种化合物生成时,是由一个固相组元(如母材)与液相(钎料)反应生成的,在钎焊时,数十秒内生成的化合物都不是纯相,这就减少了作为纯化合物相的属性。此外,这种化合物生成时或多或少以笋状方式生长,它像钉子一样嵌入钎缝,更增加了钎缝的强度。图1-24所示为用纯Sn钎焊铜丝时Cu6Sn5(η相)在钎缝中生长的情况。

978-7-111-57708-9-Chapter01-28.jpg

图1-24 用纯Sn钎焊铜丝时Cu6Sn5(η相)在钎缝中生长的情况(350℃,10s) Fig.1-24 The growth of Cu6Sn5 (η)phase of two copper wires soldered by pure tin at 350℃for 10s

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈