钎焊中钎料(F)与母材(B)之间相的关系,通常有如图1-10所示的四种类型:图a为F-B间固(母材)、液相互溶度都极小;图b为F-B间固、液相(钎料)互溶度都较大;图c为F-B间有固液同分化合物(congruent compound)生成;图d为F-B间有固液异分化合物(incongruent com-pound)生成。如果钎焊工作温度选择为TB,可以看出开始时,无论哪一种情况都是母材B向液态钎料中溶解。液体钎料的组成因溶入母材而沿虚线向右移动;当分别达到La、Lb、Lc、Ld组成点时,母材的溶入便告饱和。
第一种情况(见图1-10a),由于母材B在熔态钎料F中溶解度很小,钎缝实际上是由纯F构成的,近似的例子是用纯银或纯铜钎料钎焊铁。
第二种情况(见图1-10b),母材B在熔态的钎料中的溶解度很大,这时B以很快的速度溶入液态钎料F,直至组成达到Lb点。钎缝的结构与钎焊时加热的时间有关,如果钎焊的时间很短,液体钎料的组成还处在F-e之间,冷凝后的钎缝将是一种亚共晶结构,即在F′-B′共晶的背景上有从液相中析出的、孤立的、常呈云朵状的F′初晶(以下F′和B′表示以F或B为主的固溶体)。如果钎焊加热的时间较长,液态钎料的成分介于e′-Lb之间,冷却时呈过共晶结构。这种结构由F′-B′共晶和B′的初晶构成,但B′初晶析出时总以母材B的晶粒为晶核生长,因此B′初晶常和母材连在一起呈圆滑的一排峰峦状。图1-11所示为1000℃时纯银钎料钎焊铜的钎缝,钎缝的组成显然介于e′-Lb之间,但靠近e点。
如果钎焊加热时间更长,钎缝的组成将沿Lb→Sb移动,到达Sb点时,钎缝中便不再看得见有共晶的组织。事实上要达到Sb点很难,需要极长的时间。通常若干小时的钎焊保温,钎缝的组成也只会停留在Lb~Sb之间的某个位置上,这时钎缝的结构表现为钎料向母材的晶间渗透,母材的晶粒之间充斥着少量共晶组织。加热时间越长,共晶组织渗透的范围越大,共晶渐呈清晰的线条勾画出母材的晶界。在此范围之内的晶粒不会是纯B的晶粒,而是组成为Sb的固溶体。在金相磨片上常可看到它们比纯B晶粒的硬度大得多。
以上所谓时间的长短是相对的,由于钎缝中的反应远非平衡的,几种反应常会在钎缝中同时发生。
第三种情况(见图1-10c),钎料与母材作用生成固液同分化合物c,这时化合物c的熔点显然高于钎焊温度TB,c往往是由熔态的F原子向母材中迅速扩散而形成[19],因此在母材的边界上常可看到这个化合物是致密的一层(见图1-11和图1-12),这是液态的Sb和固态的Ni反应时在界面上形成一层化合物NiSb。固液同分化合物经常具有独立的晶格,具有通常无机化合物的某些属性,即比较稳定、不易分解、性脆、电导率和热导率都比较低等。这种情况对一个钎焊接头来说是不利的。类似的例子还有用Cu-P钎料钎焊铁,Cd基钎料钎焊铜。
图1-10 钎料与母材之间相的关系 Fig.1-10 Basic phase relationships between filler metal and base metal F—钎料 B—母材 TB —钎焊温度
(www.xing528.com)
图1-11 1000℃时纯银钎料钎焊铜的钎缝 Fig.1-11 Fillet of copper brazed by pure silver at 1000℃
图1-12 熔态Sb与固态Ni作用时界面上有层状固液同分化合物NiSb生成(700℃浸渍1s) Fig.1-12 Lamellar congruent intermetallic NiSb formed from solid Ni with liquid Sb(at 700℃for 1s dipping)
第四种情况(见图1-10d),钎料与母材间生成固液异分化合物d。虽然从热力学平衡的观点来看,化合物d和c的性质应该相似(见图1-10d),但由于d的生成反应是l+B′=d′,这种反应在钎焊条件下不可能是平衡的,即钎缝中同时会存在l、d′和B′多相,在TB温度下还会含有F存在。其中d的生长方式相当独特,在钎焊快速反应的条件下往往呈笋状生长。图1-13所示为熔态Sn与固态Cu作用时界面上有笋状固液异分化合物Cu6Sn5生成[19,22]。
图1-13 熔态Sn与固态Cu作用时界面上有笋状固液异分化合物Cu6Sn5生成(350℃浸渍2s) Fig.1-13 Bamboo shoot-like incongruent intermetallic Cu6Sn5 formed from solid Cu with liquid Sn (at 350℃for 2s dipping)
液态Sn与Cu反应温度低于415℃时,有一固液异分化合物η相生成[14]965,其组成接近Cu6Sn5。图中笋状化合物的上部富Sn,下部富Cu,实际上是一片以Cu6Sn5为主体,但组成不严格确定的固溶体。在350℃时,其长高可达3~10μm,降低温度可减小化合物的生长高度。这种钉状嵌入式的结构和层状的固液同分化合物结构不同,在某种程度上有利于钎焊接头的牢固性。液态锡和银、铁、钴、镍等过渡金属与母材作用时,在一定的温度下,其金属间化合物的类型和生长方式均相似[19],仅仅快速生长时的温度有所不同。
实际工作中很少用纯金属来做钎料,而多用合金。熔态钎料和母材的反应虽较复杂,但仍可用类似的图解来分析他们之间的冶金过程。例如,用Al-Si共晶钎料来钎焊Al,就相当于图1-10b中将F换成Al,B换成Si,而钎料的位置则是e,钎焊的温度当然不能再是TB,而只能是低于F(Al)的熔点的某个温度。这时的冶金反应就可用图1-10b的类似过程来进行分析。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。