首页 理论教育 基于模糊偏好区间的多目标满意优化模型与方法概述

基于模糊偏好区间的多目标满意优化模型与方法概述

时间:2023-06-28 理论教育 版权反馈
【摘要】:在多目标满意优化模型中,目标函数和约束条件都是明确给出的,然而由于多个目标之间往往存在强烈的冲突,造成某些目标的优化结果不能尽如人意。同时,由于以目标满意代替了目标优化,因此除了给定期望值外,决策者还需要给出每个目标函数取值的极限情况。

基于模糊偏好区间的多目标满意优化模型与方法概述

在多目标满意优化模型中,目标函数和约束条件都是明确给出的,然而由于多个目标之间往往存在强烈的冲突,造成某些目标的优化结果不能尽如人意。因此,通常情况下,为了缓和这种冲突、兼顾所有目标的利益,决策者可以根据实际决策环境,可以提前给每个目标函数设定一个期望值,并要求目标函数从不同优化角度实现,以此来大大降低矛盾冲突性。每个目标期望值都要等于或劣于其目标函数在系统约束下的最优值,并且要位于Pareto最优前沿以外。同时,由于以目标满意代替了目标优化,因此除了给定期望值外,决策者还需要给出每个目标函数取值的极限情况。根据模糊决策理论,可以将由期望值和容许度构成的决策目标要求看作是模糊目标,用带有不同模糊关系的语言表示优化要求,如“比f稍微大”“略小于f”或“大约等于f”,因此也称为模糊目标规划问题,这种方式也更符合决策者的理解能力和语言表达习惯。

在多目标模糊优化问题中,也必须解决几个基本问题。第一,要选择适当的隶属度函数来刻画模糊目标的特性;第二,要采用某个或某些模糊算子对不同的目标进行综合,以形成总体的满意性测度;第三,要确定模糊优化问题的数学模型;第四,要推导出求解模糊数学规划的具体算法

而多目标模糊满意优化方法是求解上述问题的有效方法[344]。求解多目标满意优化问题的关键在于如何合理地构造优化问题性能指标的满意度函数。实际的多目标满意优化问题中,以追求满意解为目标一般很难用精确的数学模型加以描述,这使得基于精确数学模型常规的多目标优化方法在应用上受到很大限制,设计决策者不可能对全部目标函数、约束条件等实施完全确定的建模,而且决策者对性能指标满意度的概念本身就可能是不明确的。这种情况下,建立能够反映决策偏好不明确性的满意度函数符合问题的本质。另一方面,当满意度函数采用显式表达时,工程中常常忽略性能指标间相互独立的条件,不适当地采用加权的方式建立综合满意度函数的方式求解多目标满意优化问题。(www.xing528.com)

为了解决上述问题,本章提出一种基于偏好区间的满意度函数构造方法,建立基于模糊偏好区间的多目标满意优化模型;利用模糊偏好区间对Pareto解集进行分类并定义各类的代表性解,决策者根据该分类信息提出后验偏好,从而实现满意决策;利用折衷系数对各性能指标改进或牺牲的制约作用,提出基于满意度的模糊多目标协同优化方法。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈