首页 理论教育 RFID系统分类:一览无余

RFID系统分类:一览无余

时间:2023-06-25 理论教育 版权反馈
【摘要】:另外还可依据标签的材质、系统工作距离和阅读器的工作状态等方面对RFID系统进行分类。表2-3射频标签的工作频率按照工作频率的不同,RFID标签可以分为低频、高频、超高频和微波等不同种类。目前,先进的射频识别系统均将多标签识读问题作为系统的一个重要特征。近距离RFID系统主要使用125kHz、13.56MHz等LF和HF频段,技术最为成

RFID系统分类:一览无余

RFID系统按照不同的分类标准有多种分类方法:

1)根据系统工作频率不同,可将RFID系统分为低频系统、中频系统和高频系统三大类;

2)根据RFID标签内是否需要电池供电,又可将其分为有源系统和无源系统两大类;

3)根据系统保存的信息写入的方式不同,可分为集成电路固化式、现场有线改写式和现场无线改写式三大类;

4)根据读取电子标签数据的技术实现手段,可将其分为广播发射式、倍频式和反射调制式三大类。

另外还可依据标签的材质、系统工作距离和阅读器的工作状态等方面对RFID系统进行分类。下面主要根据系统工作频率分类进行简介:对一个RFID系统来说,它的频段概念是指读写器通过天线发送、接收并识读的标签信号频率范围。从应用概念来说,射频标签的工作频率也就是射频识别系统的工作频率,直接决定系统应用的各方面特性。在RFID系统中,系统工作就像我们平时收听调频广播一样,射频标签和读写器也要调制到相同的频率才能工作。

射频标签的工作频率不仅决定着射频识别系统工作原理(电感耦合还是电磁耦合)、识别距离,还决定着射频标签及读写器实现的难易程度和设备成本。RFID应用占据的频段或频点在国际上有公认的划分,即位于ISM波段(见表2-3)。

表2-3 射频标签的工作频率

978-7-111-55124-9-Chapter02-4.jpg

按照工作频率的不同,RFID标签可以分为低频(LF)、高频(HF)、超高频(UHF)和微波等不同种类。不同频段的RFID工作原理不同,LF和HF频段RFID电子标签一般采用电磁耦合原理,而UHF及微波频段的RFID一般采用电磁发射原理。目前国际上广泛采用的频率分布于4种波段,低频(125kHz)、高频(13.56MHz)、超高频(850~910MHz)和微波(2.45GHz)。每一种频率都有它的特点,被用在不同的领域,因此要正确使用就要先选择合适的频率。(www.xing528.com)

低频段射频标签,简称为低频标签,其工作频率范围为30~300kHz。典型工作频率有125kHz和133kHz。低频标签一般为无源标签,其工作能量通过电感耦合方式从阅读器耦合线圈的辐射近场中获得。低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于1m。低频标签的典型应用有:动物识别、容器识别、工具识别、电子闭锁防盗(带有内置应答器的汽车钥匙)等。

中高频段射频标签的工作频率一般为3~30MHz,典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。鉴于该频段的射频标签可能是实际应用中最大量的一种射频标签,因而我们只要将高、低理解成为一个相对的概念,即不会造成理解上的混乱。为了便于叙述,我们将其称为中频射频标签。中频标签一般也采用无源设备其工作能量同低频标签一样,也是通过电感(磁)耦合方式从阅读器耦合线圈的辐射近场中获得。标签与阅读器进行数据交换时,标签必须位于阅读器天线辐射的近场区内。中频标签的阅读距离一般情况下也小于1m。中频标签由于可方便地做成卡状,广泛应用于电子车票、电子身份证、电子闭锁防盗(电子遥控门锁控制器)、小区物业管理、大厦门禁系统等。

超高频与微波频段的射频标签简称为微波射频标签,其典型工作频率有433.92MHz、862(902)~928MHz、2.45GHz、5.8GHz。微波射频标签可分为有源标签与无源标签两类。工作时,射频标签位于阅读器天线辐射场的远区场内,标签与阅读器之间的耦合方式为电磁耦合方式。阅读器天线辐射场为无源标签提供射频能量,将有源标签唤醒。相应的射频识别系统阅读距离一般大于1m,典型情况为4~6m,最大可达10m以上。阅读器天线一般均为定向天线,只有在阅读器天线定向波束范围内的射频标签可被读/写。随着阅读距离的增加,应用中有可能在阅读区域中同时出现多个射频标签的情况,从而提出了多标签同时读取的需求。目前,先进的射频识别系统均将多标签识读问题作为系统的一个重要特征。超高频标签主要用于铁路车辆自动识别、集装箱识别,还可用于公路车辆识别与自动收费系统中。

以目前技术水平来说,无源微波射频标签比较成功的产品相对集中在902~928MHz频段上。2.45GHz和5.8GHz射频识别系统多以半无源微波射频标签产品面世。半无源标签一般采用纽扣电池供电,具有较远的阅读距离。微波射频标签的典型特点主要集中在是否无源、无线读写距离、是否支持多标签读写、是否适合高速识别应用、读写器的发射功率容限、射频标签及读写器的价格等方面。对于可无线写的射频标签而言,通常情况下写入距离要小于识读距离,其原因在于写入要求更大的能量。微波射频标签的数据存储容量一般限定在2kbit以内,再大的存储容量似乎没有太大的意义,从技术及应用的角度来说,微波射频标签并不适合作为大量数据的载体,其主要功能在于标识物品并完成无接触的识别过程。典型的数据容量指标有:1kbit、128bit、64bit等。由Auto-ID Center制定的产品电子代码EPC的容量为90bit。微波射频标签的典型应用包括移动车辆识别、电子闭锁防盗(电子遥控门锁控制器)、医疗科研等行业。

不同频率的标签有不同的特点,例如,低频标签比超高频标签便宜,节省能量,穿透废金属物体力强,工作频率不受无线电频率管制约束,最适合用于含水成分较高的物体,比如水果等;超高频作用范围广,传送数据速度快,但是比较耗能,穿透力较弱,作业区域不能有太多干扰,适用于监测港口、仓储等物流领域的物品;而高频标签属中短距识别,读写速度也居中,产品价格也相对便宜,比如应用在电子票证一卡通上。

目前,不同的国家对于相同波段,使用的频率也不尽相同。欧洲使用的超高频是868MHz,美国则是915MHz。日本目前不允许将超高频用到射频技术中。

目前在实际应用中,比较常用的是13.56MHz、860~960MHz、2.45GHz等频段。近距离RFID系统主要使用125kHz、13.56MHz等LF和HF频段,技术最为成熟;远距离RFID系统主要使用433MHz、860~960MHz等UHF频段,以及2.45GHz、5.8GHz等微波频段,目前还多在测试当中,没有大规模应用。

我国在LF和HF频段RFID标签芯片设计方面的技术比较成熟,HF频段方面的设计技术接近国际先进水平,已经自主开发出符合ISO14443 Type A、Type B和ISO15693标准的RFID芯片,并成功地应用于交通一卡通和第二代身份证等项目中。

此外,有源RFID和无源RFID是人们经常采用的分类方法:标签内装有电池的RFID系统被称为有源系统。有源系统一般具有较远的阅读距离,但是对有源系统而言,电池的寿命有限,一般是3~10年;标签内没有电池的RFID系统为无源系统。无源系统工作时,阅读器发射的电磁波转化为能量供应系统正常读取信息。由于阅读器电磁波转化的能量限制,无源系统的阅读距离有限,并且不适于在高速运动的情况下读取标签。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈