首页 理论教育 声源和声场的数学模型优化方案

声源和声场的数学模型优化方案

时间:2023-06-24 理论教育 版权反馈
【摘要】:描述声场时间、空间变化规律和相互联系的数学方程称为声波的波动方程。假定介质中传播的是小幅声波,即各声学量都是一级微量。声阻抗率对声波传播有重要影响。

声源和声场的数学模型优化方案

1.声波的几何描述

波源处的声发射波形包含着波源的定量信息,用声发射检测系统测得的波形由于介质的传播特性和传感器特性的影响变得非常复杂。为了准确得到所测波形的特性参数,必须对波的几何描述有所了解。

当波源在弹性介质中振动时,振动状态将向各方向传播。为了形象地描述某时刻振动在弹性介质中传播到各点的位置,则把该时刻振动的传播在各点的轨迹所组成的曲面称为波前。各向同性介质中的波如图2-16所示。在描述波传播时各质点振动之间的位相关系,把振动位相相同的各点组成的曲面称为波面。对于给定的时刻,振动传播到各点的位置是唯一的,且振动位相等于波源开始振动时的位相,则波前对给定的时刻只有一个,即最前面的波面。而在任何时刻振动位相相同的点的轨迹(即波面)却是任意多的。

978-7-111-60740-3-Chapter02-17.jpg

2-16 各向同性介质中的波

a)点波源 b)球面波 c)平面波

如果波源的大小和形状与波的传播距离相比较可以忽略不计,则称为点波源。对于各向同性的均匀弹性介质(指介质各个方向上的密度、弹性模量等都相同)而言,振动由波源向各个方向传播的速度是一样的。因此,波前和波面是以点波源为中心的球面。若振动离点波源极远时,则在一定范围的局部区域内,波面和波前可视为平面(图2-16c)。

若按波面的形状将波进行分类,波前为球面的波称为球面波,波前为平面的波称为平面波。

波的传播方向即为沿波的传播方向做一系列直线,称之为波线。在各向同性的介质里,对于球面波,波线是沿各径向的直线;对于平面波,波线是与波面垂直的一组平行直线。

2.波动方程

波动方程是声场的基本关系式,它不仅是描述波运动数学方程,也是计算声学问题的基本关系式。在研究声发射及信号处理问题中,具有重要意义。

存在声波的空间称为声场。描述声场时间、空间变化规律和相互联系的数学方程称为声波的波动方程。一切简单或复杂的声学现象规律,乃至各种工程应用都必须遵循声波方程所描述的科学规律;声发射现象也毫不例外地遵从这个规律。

为简化其数学处理,实际应用中常对大多数声学工程问题进行简化,但这些简化并不能产生多大的作用。如一般假设理想流体介质满足三个基本物理定律:牛顿第二定律(压力变化与质点速度之间的关系)、质量守恒定律(可压缩介质与质点速度之间的关系)、热力学定律(介质中压强变化与密度变化之间的关系),再由三个基本定律得到的三个基本方程为运动方程、连续性方程和物态方程。

(1)声波方程

1)一维声波方程。假定介质中传播的是小幅声波,即各声学量都是一级微量。如声压远小于介质中的静态压强;介质质点振动速度远小于声波的传播速度;质点位移远小于声波波长;介质密度变化量远小于静态密度。若声波仅在空间一个方向(如x方向)传播,而在其他两个方向yz上声场都是均匀的,则

978-7-111-60740-3-Chapter02-18.jpg

式中,c0为声波在介质中的传播速度,简称为声速(与介质静态物理特性有关的常数)。

式(2-4)即为一维的声波方程。

2)三维声波方程。声学工程实际表明,声波不会常限于一维方向传播。为普遍起见,在三维空间中,把一维的声波方程推广为三维声波方程,即

978-7-111-60740-3-Chapter02-19.jpg

式中,▽2拉普拉斯算子;在直角坐标系中,978-7-111-60740-3-Chapter02-20.jpg

(2)平面声波 平面声波作为一种最简单的声波波形,在声学工程中常作为分析声学问题的起始点,可使问题大大简化,并通过了解平面波的基本特性来认识声波。

平面声波是假设声波仅沿x方向传播的声波,在yz平面上所有质点的运动是均匀的,如质点的振幅及相位均相同。深入了解平面声波,理论上就是求解一维声波方程[式(2-4)],其适合声学问题的解析表达式为

utx)=Aejωt-kx (2-6)

式中:A为待定常数;ω为声波角频率k=ω/c0k被定义为传播常数,简称波数,c0为声速;j虚数符号,978-7-111-60740-3-Chapter02-21.jpg

需要说明的是:式(2-6)表明,在忽略声波传播过程中,声波没有遇到反射体,则不会出现反射;只有向前行进的波,简称行波。(www.xing528.com)

若求得声压p,即可得介质中的质点速度为

vtx)=v0ejωt-kx (2-7)

式中,v0为质点速度的幅值,与静态压强、介质密度和声速有关。

理想介质中,平面声波质点速度的幅值是不随距离变化的常数,即声波在传播过程中无任何衰减。因为理想介质不存在黏滞损耗;同时平面声波的波阵在传播过程中一直保持平面不会扩大,声能量也不会随距离的变化而变化。声阻抗率即

978-7-111-60740-3-Chapter02-22.jpg

式中:Z称为声阻抗率;p为声压;v为质点扰动速度。

在理想介质中,声阻抗率代表能量通过传播从一处向毗邻的另一处转移,即传播损耗。在平面声场中,平面行波的声阻抗率为

Z=ρ0c0 (2-9)

式中,ρ0为介质密度。

声阻抗率对声波传播有重要影响。在声学中将称为介质的特性阻抗,其单位为Pa·s/m。

3.声场辐射

(1)声源辐射 为便于探寻声源的辐射规律,工程中常将复杂的面声源视为无限多个点声源的集合。设一半径为r、表面做均匀微小胀缩振动的球体,其紧邻的介质质点在其带动下随之振动,而产生辐射声波。因球面的振动具有各向均匀的脉动性质,所以,辐射声波的波阵面是均匀球面,辐射波为均匀球面声波。球面波辐射如图2-17所示。

978-7-111-60740-3-Chapter02-23.jpg

2-17 球面波辐射

球面声辐射源的辐射规律以三维声波描述比较方便,三维声波方程的直角坐标经变换得

978-7-111-60740-3-Chapter02-24.jpg

对于均匀球面波,辐射空间中的声音仅与径向坐标有关,而与极角θ方位角φ无关,所以球坐标下的声波方程可简化为

978-7-111-60740-3-Chapter02-25.jpg

(2)声场辐射规律 假设空间不存在反射面即无反射波,通过动力学质点方程可得质点沿径向r的速度vr

978-7-111-60740-3-Chapter02-26.jpg

式中:978-7-111-60740-3-Chapter02-27.jpg为声压增幅;A取决于球声源表面的振动状况,A不仅与球源的振动速度幅值成正比,还与声波频率、球源半径等有关。

如果球源振动速度幅值相同,当球源较小或振动频率较低时,辐射声波的幅值较小;当球源较大或频率较高时,辐射声波的幅值较大。如果大小一定的球源振动速度幅值一定,则频率越高,辐射声压幅值越大;频率越低,辐射声压幅值越小。而对于一定频率的声源,则球源半径越大,辐射声波的幅值越大;反之,半径越小,辐射声波的幅值越小。声辐射与声源大小及声波频率的关系,在工程实践和日常生活中具有普遍的意义。

可以看出,脉动球声源在自由空间的辐射遵从下述规律:声音强弱与径向距离有关;声压振幅随径向距离反比例地减小,意味着在球面声场中离声源越远,声音越弱。球面声波的这一重要特性,即辐射声场的这一规律已为人们生活常识所证明。例如:人们低频声音说话时的声波可视为球面声源,声波的球面波向周围传播;距离越近,声音较强;距离越远,声音就显得越弱。

(3)声辐射阻抗

与力学中的质量、弹簧、阻尼与振动速度的关系类似,当声源向介质辐射声波时,介质相当于由一等效力阻和等效质量块所组成的系统,也要“消耗”能量及对声源产生附加质量。声源在介质中振动时会产生辐射阻和辐射抗,这也是声辐射的重要特性之一。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈