1.技术系统进化论
技术系统进化论属于TRIZ的基础理论,其主要观点是:科技产品的进化并不是随意的,也同样遵循着一定的客观规律和模式。所有技术的创造与升级都是向最强大的功能发展的。
阿奇舒勒通过对大量发明专利的分析,发现所有产品向最先进的功能进化时,都有一条“小路”引领着它前进。这条“小路”就是进化过程中的规律,表示出来就是一条S形的“小路”,即所谓的S曲线。任何一种产品、工艺或技术都在随着时间向着更高级的方向发展和进化,并且它们的进化过程都会经历相同的几个阶段,分别是诞生期、成长期、成熟期和衰退期。
阿奇舒勒通过研究给出了技术系统演变的8个模式,它们对于产品的创新具有重要的指导作用。
1)技术系统演变遵循产生、成长、成熟和衰退的生命周期。
2)技术系统演变的趋势是提升理想状态。
3)矛盾的导致是由于系统中子系统开发的不均匀性。
4)首先是部件匹配,然后失配。
5)技术系统首先向复杂化演进,然后通过集成向简单化发展。
6)从宏观系统向微观系统转变,即向小型化和增加使用能量场演进。
7)技术向增加动态性和可控性发展。
8)向增加自动化减少人工介入演变。
2.矛盾
在TRIZ中,工程中所出现的种种矛盾可以归结为3类:一类是物理矛盾,一类是技术矛盾,一类是管理矛盾。
(1)物理矛盾 通俗来讲,物理矛盾就是指系统(系统指的是机器、设备、材料、仪器等的统称)中的问题是由一个参数导致的。其中的矛盾是,系统一方面要求该参数正向发展,另一方面要求该参数负向发展;例如,系统要求温度既要升高,也要降低;质量既要增大,也要减小;缝隙既要窄,也要宽等。这种矛盾的说法看起来也许会觉得荒唐,但事实上在多数工作中都存在这样的矛盾。物理矛盾一般来说有两种表现:一是系统中有害性能降低的同时导致该子系统中有用性能的降低;二是系统中有用性能增强的同时导致该子系统中有害性能的增强。
(2)技术矛盾 所谓的技术矛盾就是由系统中两个因素导致的,这两个参数相互促进、相互制约。解决技术矛盾问题的传统方法是在多个要求间寻求“折中”,也就是“优化设计”,但每个参数都不能达到最佳值。而TRIZ则是努力寻求突破性方法消除冲突,即“无折中设计”。TRIZ将导致技术矛盾的因素总结成通用参数。阿奇舒勒总结出工程领域内常用的表述系统性能的39个通用参数,通用参数一般是物理、几何和技术性能的参数。尽管现在有很多对这些参数的补充研究,并将个数提高到了50多个,但在这里我们仍然只介绍核心的这39个参数,见表3-2。
表3-2 39个通用参数及其定义
(续)
(续)
39个工程参数中常用到运动物体(Moving objects)与静止物体(Stationary objects)两个术语,运动物体是指自身或借助于外力可在一定的空间内运动的物体;静止物体是指自身或借助于外力都不能使其在空间内运动的物体。
为了应用方便,上述39个通用工程参数可分为如下3类:
物理及几何参数:(1)~(12),(17)~(18),(21)。
技术负向参数:(15)~(16),(19)~(20),(22)~(26),(30)~(31)。
技术正向参数:(13)~(14),(27)~(29),(32)~(39)。
负向参数(Negative parameters)指这些参数变大时,使系统或子系统的性能变差。如子系统为完成特定的功能所消耗的能量(第19,20条)越大,则设计越不合理。
正向参数(Positive parameters)指这些参数变大时,使系统或子系统的性能变好。如子系统可制造性(第32条)指标越高,子系统制造成本就越低。
(3)管理矛盾 所谓管理矛盾是指,在一个系统中,各个子系统已经处于良好的运行状态,但是子系统之间产生不利的相互作用、相互影响,使整个系统产生问题。比如:一个部门与另一个部门的矛盾,一个工艺与另一个工艺的矛盾,一个机器与另一个机器的矛盾,虽然各个部门、各个工艺、各个机器等都达到了自身系统的良好状态,但对其他系统产生副作用。
例如,一个车间突然接到在油中淬火一批大尺寸零件的订单,但车间没有单独的地方对零件进行淬火,只能在公用的地方进行。桥式起重机从煅炉中吊起来炽热的零件放入油槽中淬火,零件刚一接触到油槽中的油,车间马上充满了刺鼻的浓烟。浓烟向上漂浮,严重地影响到起重机驾驶员的工作,使其无法呼吸。
在这个例子中,起重机驾驶员的工作和淬火的工作本身都没有很大的问题,但是淬火已经严重影响到起重机驾驶员,这就可以看成车间这个系统中的管理矛盾。对于管理矛盾是要依靠具体子系统的物理矛盾或是技术矛盾来解决的。在该例中,可以将管理矛盾转变成淬火的技术矛盾,即淬火能正常经行,而不产生浓烟。最后的解决办法可以是在油的表面放置二氧化碳气体,当炽热的零件接触到油的时候,就不会使空气中的氧气和油相接触,于是就产生不了浓烟。
3.40个发明原理
阿奇舒勒工作的结果是每个科学家不必研究所有的专利来寻找解决问题的方法。研究者只需看清矛盾,用相关内容找到解决问题的方法。为了解决矛盾矩阵中每个参数对应构成的矛盾,TRIZ提供了40个解决这些矛盾的创新原则,如分割、抽取、组合等,见表3-3。
表3-3 40个发明原理(www.xing528.com)
4.阿奇舒勒矛盾矩阵
前面已经讲过,两个通用工程参数导致了系统的技术矛盾,那么将这两个参数相结合就能够找出解决矛盾的办法,于是TRIZ用了数学上比较常见的矩阵的方式来简单地表述出找到解决办法的途径,见表3-4,为阿奇舒勒矛盾矩阵(局部)。
在阿奇舒勒的矛盾矩阵中,将39个通用工程参数横向、纵向顺次排列,横向代表恶化的参数,纵向代表改善的参数,在工程参数纵横交叉的方格内的数字代表建议使用的40个发明原理的序号。矩阵共组成了1521个方格,其中有1263个方格内有数字。在没有数字的方格中,“+”方格处于相同参数的交叉点,系统矛盾由一个因素导致,这是物理矛盾,不在技术矛盾应用范围之内。“-”方格表示没有找到合适的发明原理来解决问题,当然只是表示研究的局限,并不代表不能够应用发明原理。
表3-4 查找阿奇舒勒矛盾矩阵
5.综合应用实例
下面以开口扳手(美国专利5406868)举例说明通用工程参数、阿奇舒勒矛盾矩阵、40个发明原理的综合应用。
例 专利开口扳手如图3-2所示。当我们使用开口扳手拧开六角螺栓时,扳手受力集中在螺栓的2条棱边,见局部图3-3,棱边容易变形而造成扳手打滑。
图3-2 开口扳手
图3-3 开口扳手局部图
下面使用TRIZ的阿奇舒勒矛盾矩阵和发明原理来解决此问题。
1.首先确定工程参数
现在存在的主要问题是:扳手受力集中在螺栓的两条棱边,棱边容易变形而造成扳手打滑,这是欲改善的特性。对应到通用工程参数中选择“31物体产生的有害因素”,以此作为改善的参数。
为避免打滑,扳手的开口尺寸需要做到合适,在确保可卡入螺栓头的前提下,扳手开口与螺栓头之间的间隙尽可能地小。因此,在扳手的制造过程中,对开口尺寸需要进行严格的控制,保证尺寸精度,这就是被恶化的特性。对应到通用工程参数中选择“29制造精度”,作为被恶化的参数。
2.然后查找阿奇舒勒矛盾矩阵
欲改善的参数:31物体产生的有害因素;被恶化的参数:29制造精度。查找阿奇舒勒矛盾矩阵,见表3-4。
从矩阵表查找31和29对应的方格,得到方格中推荐的发明原理序号共4个,分别是:4,17,34,26。与表3-3的发明原理目录对应,得到这4条发明原理依次是:
4——增加不对称性;
17——一维变多维;
34——抛弃或再生;
26——复制。
3.发明原理的分析
4——增加不对称性:可能的设计是,扳手的开口可以设计成不对称的,此方案对问题的彻底解决贡献有限。
17——一维变多维:从点—线—面一体,从单—双—多的进化路径看,增大扳手开口的接触面积对问题的彻底解决贡献最大。
34——抛弃或再生:此方案对问题的彻底解决无贡献。
26——复制:此方案对问题的彻底解决无贡献。
4.发明原理的应用
综合以上4条发明原理的分析,一维变多维是最具有价值的发明原理,其次是增加不对称性原理。
而美国专利5406868,正是基于发明原理17“一维变多维”来进行了扳手的结构改进,增大扳手与螺栓头的接触面积,从而解决了开口扳手存在的问题,如图3-4所示。
图3-4 开口扳手设计图
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。