首页 理论教育 大数据助力新一轮制造业革命

大数据助力新一轮制造业革命

时间:2023-06-23 理论教育 版权反馈
【摘要】:发达国家中,德国为了应对愈演愈烈的全球竞争,进一步巩固其作为生产制造基地、生产设备供应商和IT业务解决方案供应商的地位,提出了“工业4.0”计划。

大数据助力新一轮制造业革命

新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点。各国都在加大科技创新力度,推动三维(3D)打印、移动互联网、云计算、大数据、生物工程、新能源新材料领域取得新突破。基于信息物理系统的智能装备、智能工厂等智能制造正在引领制造方式变革;网络众包、协同设计、大规模个性化定制、精准供应链管理、全生命周期管理、电子商务等正在重塑产业价值链体系;可穿戴智能产品、智能家电、智能汽车等智能终端产品不断拓展制造业新领域。

全球产业竞争格局正在发生重大调整,我国在新一轮发展中面临巨大挑战,同时也迎来了转型升级和创新发展的重大机遇。发达国家中,德国为了应对愈演愈烈的全球竞争,进一步巩固其作为生产制造基地、生产设备供应商和IT业务解决方案供应商的地位,提出了“工业4.0”计划。而在国际金融危机发生后,美国开始积极实施“再工业化”战略,重塑制造业竞争新优势,加速推进新一轮全球贸易投资新格局,提出了工业互联网的概念。一些发展中国家也在加快谋划和布局,积极参与全球产业再分工,承接产业及资本转移,拓展国际市场空间。我国制造业面临发达国家和其他发展中国家“双向挤压”的严峻挑战,必须放眼全球,加紧战略部署,着眼建设制造强国,固本培元,化挑战为机遇,抢占制造业新一轮竞争制高点,也提出了相对应的“中国制造2025”计划。

5.1.1.1 德国工业4.0

德国是全球制造业中最具竞争力的国家之一,其装备制造行业全球领先。这是由于德国在创新制造技术方面的研究、开发和生产,以及在复杂工业过程管理方面高度专业化使然。德国拥有强大的机械和装备制造业、占据全球信息技术能力的显著地位以及在嵌入式系统和自动化工程方面具有很高的技术水平,这些都意味着德国确立了其在制造工程行业中的领导地位。

2014年4月,德国机械及制造商协会、德国信息技术、通信与新媒体协会、德国电子电气制造商协会合作设立了“工业4.0平台”,并向德国政府提交了平台工作组的最终报告——《保障德国制造业的未来——关于实施工业4.0战略的建议》。报告提出德国向工业4.0转变需要采取双重策略,即德国要成为智能制造技术的主要供应商和CPS(信息物理系统)技术及产品的领先市场。

德国政府和产业界认为,第一次工业革命始于18世纪后半期由蒸汽机实现工厂的机械化;第二次工业革命始于19世纪后半期用电力来实现大规模化批量生产;第三次工业革命始于20世纪后半期通过电气和信息技术实现制造业的自动化。工业4.0将在前三次工业革命的基础上进一步进化,基于信息物理系统(cyber physical system)实现新的制造方式。信息物理系统是指通过传感网紧密连接现实世界,将网络空间的高级计算能力有效运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。

1)战略目标

作为德国政府《高技术战略2020》确定的十大未来项目之一,工业4.0已上升为德国国家战略,旨在支持工业领域新一代革命性技术的研发与创新,提升工业领域的智能化和信息化水平升级其国内的工业体系,引领第四次工业革命。

工业4.0计划提出的根本原因在于,德国面临愈演愈烈的全球竞争,主要针对亚洲对德国工业构成的竞争威胁和美国的“先进制造业”发展,希望充分发挥其在制造业的现有优势,以确保德国制造业的未来。工业4.0工作组联合主席Henning Kagermann博士明确指出:“工业4.0为德国提供了一个机会,使其进一步巩固其作为生产制造基地、生产设备供应商和IT业务解决方案供应商的地位。令人鼓舞的是,我们可以看到德国的所有利益相关方在紧密合作,通过工业4.0平台,一起向前迈进,加以实施。”

2)核心内容

工业4.0计划的核心内容可以用“一个网络、两大主题、三大集成”来概括:

(1)一个网络——信息物理融合系统。工业4.0强调通过信息网络与物理生产系统的融合,即建设信息物理融合系统来改变当前的工业生产与服务模式。具体是指将信息物理系统技术一体化应用于制造业和物流行业,以及在工业生产过程中使用物联网和服务技术,实现虚拟网络世界与实体物理系统的融合,完成制造业在数据分析基础上的转型。通过“6C”技术:connection(连接)、cloud(云储存)、cyber(虚拟网络)、content(内容)、community(社群)、customization(定制化)将资源、信息、物体以及人员紧密联系在一起,从而创造物联网及相关服务,并将生产工厂转变为一个智能环境

(2)两大主题——智能工厂和智能生产。智能工厂由分散的、智能化生产设备组成,在实现了数据交互之后,这些设备能够形成高度智能化的有机体,实现网络化、分布式生产。智能生产将人机互动、智能物流管理、3D打印与增材制造等先进技术应用于整个工业生产过程。智能工厂与智能生产过程使人、机器和资源如同在一个社交网络里一般自然地相互沟通协作;智能产品能理解它们被制造的细节以及将被如何使用,协助生产过程。最终通过智能工厂与智能移动,智能物流和智能系统网络相对接,构成工业4.0中的未来智能基础设施。

(3)三大集成——横向集成、纵向集成、端到端集成。

横向集成:工业4.0通过价值网络实现横向集成,将各种使用不同制造阶段和商业计划的IT系统集成在一起,既包括一个公司内部的材料、能源和信息,也包括不同公司间的配置的配置。最终通过横向集成开发出公司间交互的价值链网络。

纵向集成:垂直集成和网络化制造系统,将处于不同层级(例如,执行器和传感器、控制、生产管理、制造和企业规划执行等不同层面)的IT系统进行集成。最终,在企业内部开发、实施和纵向集成灵活而又可重构的制造系统。

端到端集成:贯穿整个价值链的端到端工程数字化集成,在所有终端实现数字化的前提下实现的基于价值链与不同公司之间的一种整合,将在最大程度上实现个性化定制。最终针对覆盖产品及其相联系的制造系统完整价值链,实现数字化端到端工程。

(4)重点领域。工业4.0计划优先执行的重点关键领域包括八个方面:建立标准化和开放标准的一个参考架构、实现复杂系统管理、为工业提供全面带宽的基础设施、建立安保措施、实现数字化工业时代工作的组织和设计、实现培训和持续的职业发展、建立规章制度、提高资源效率

其中的首要目标就是“标准化”。PLC编程语言的国际标准IEC 61131-3(PLCopen)主要是来自德国企业;通信领域普及的CAN、Profibus以及EtherCAT也全都诞生于德国。工业4.0工作组认为,推行工业4.0需要在8个关键领域采取行动。其中第一个领域就是“标准化和参考架构”。标准化工作主要围绕智能工厂生态链上各个环节制定合作机制,确定哪些信息可被用来交换。为此,工业4.0将制定一揽子共同标准,使合作机制成为可能,并通过一系列标准(如成本、可用性和资源消耗)对生产流程进行优化。以往,我们听到的大多是“产品的标准化”,而德国工业4.0将推广“工厂的标准化”,借助智能工厂的标准化将制造业生产模式推广到国际市场,以标准化提高技术创新和模式创新的市场化效率,继续保持德国工业的世界领先地位。

5.1.1.2 美国工业互联网

美国以GE为首的企业联盟倡导的“工业互联网”,强调通过智能机器间的连接并最终将人机连接,结合软件和大数据分析,来重构全球工业。

1)战略目标

2009年4月,刚刚出任美国总统奥巴马发表演讲,提出将重振制造业作为美国经济长远发展的重大战略。同年12月,美国政府出台《重振美国制造业框架》,详细分析了重振制造业的理论基础及优势,成为美国发展制造业的战略指引。随后奥巴马政府从战略布局、发展路径到具体措施,逐步铺展,完成了制造业创新计划部署。

2011年6月,美国正式启动“先进制造伙伴计划”,旨在加快抢占21世纪先进制造业制高点。2012年2月进一步推出“先进制造业国家战略计划”,通过积极政策,鼓励制造企业回归美国本土。上述计划包括两条主线,一是调整、提升传统制造业结构及竞争力,二是发展高新技术产业,提出发展包括先进生产技术平台、先进制造工艺及设计与数据基础设施等先进数字化制造技术。

2012年3月,奥巴马首次提出建设“国家制造业创新网络”,建立最多45个研究中心,加强高等院校和制造企业之间的产学研有机结合。2013年1月,美国总统执行办公室、国家科学技术委员会和高端制造业国家项目办公室联合发布了《国家制造业创新网络初步设计》,投资10亿美元组建美国制造业创新网络(NNMI),集中力量推动数字化制造、新能源以及新材料应用等先进制造业的创新发展,打造一批具有先进制造业能力的创新集群。

这些政策和事件表明,为应对新科技产业革命,争夺国际产业竞争话语权,美国将重振制造业作为近年最优先发展的战略目标。金融危机后,美国政府出台了一系列法案,着力兴建制造业创新研究中心,希望以高新技术改造传统制造业,推动美国经济再次走上可持续增长之路。行业组织工业互联网联盟的组建,宣告了美国在“再工业化”道路上进一步前进的决心。与德国强调的“硬”制造不同,软件和互联网经济发达的美国更侧重于在“软”服务方面推动新一轮工业革命,希望用互联网激活传统工业,保持制造业的长期竞争力。

GE预计,工业互联网的技术创新将直接应用于各行各业,并产生32.3万亿美元的经济效益。随着全球经济继续发展,工业互联网的应用潜力也将不断增长。到2025年,工业互联网将创造82万亿美元的经济价值(约为全球经济总量的二分之一)。了解具体行业中工业互联网产生价值的保守估算,具有一定的指导意义。工业互联网效率增长1%,将产生巨大影响。例如,在商用航空领域,每节省1%的燃料意味着将来15年中能节省300亿美元支出。同样,若全球燃气电厂运作相率提升1%,将节省660亿美元能耗支出。此外,工业互联网能提高医疗保健流程效率,有益于该行业的发展。医疗保健行业效率每增长一个百分点,将节省630亿美元。世界铁路网交通运输效率,若提高一个百分点,将节省270亿美元能源支出。

2)核心内容

工业互联网的核心内容即是发挥数据采集、互联网、大数据、云计算的作用,节约工业生产成本,提升制造水平。工业互联网将为基于互联网的工业应用打造一个稳定可靠、安全、实时、高效的全球工业互联网络。通过工业互联网,我们将智能化的机器与机器连接互通起来,将智能化的机器与人类互通起来,更深层次的是我们可以做到智能化分析,从而能帮助人们和设备做出更智慧的决策,这就是工业互联网给客户带来的核心利益。

以航空业为例,据估算目前有2万架商用飞机,它们配备有4.3万台喷气发动机。每台喷气发动机由诸多旋转设备组成。针对这些旋转设备,人们可以进行单独监控。若“智能飞机”能与机组人员交流互动,那么发动机维护、燃料消耗、机组人员分配与调度的效率提升将超乎想象。所有这些仍仅是基于当下数据。在未来15年中,随着航空服务不断扩展,陆续将有3万台喷气发动机投入使用。同样,火车头、联合循环发电厂、能源加工厂、工业设施与其他关键设备也颇具潜力。

3)重点领域

与德国工业4.0强调的“硬”制造不同,软件和互联网经济发达的美国更侧重于在“软”服务方面推动新一轮工业革命,希望借助网络和数据的力量提升整个工业的价值创造能力。可以说,美国版的工业4.0实际上就是“工业互联网”革命。

“工业互联网”的概念最早由通用电气于2012年提出,随后美国五家行业龙头企业联手组建了工业互联网联盟(IIC),将这一概念大力推广开来。除了通用电气这样的制造业巨头,加入该联盟的还有IBM、思科英特尔和AT&T等IT企业。工业互联网联盟致力于发展一个“通用蓝图”,使各个厂商设备之间可以实现数据共享。该蓝图的标准不仅涉及Internet网络协议,还包括诸如IT系统中数据的存储容量、互连和非互连设备的功率大小、数据流量控制等指标。其目的在于通过制定通用标准,打破技术壁垒,利用互联网激活传统工业过程,更好地促进物理世界和数字世界的融合。

尽管上述标准的建立和最终批准可能需要几年时间,但一旦这些标准建立起来,将有助于硬件和软件开发商创建与物联网完全兼容的产品,最终结果可能是实现传感器、网络、计算机、云计算系统、大型企业、车辆和数以百计其他类型的实体得以全面整合,推动整个工业产业链的效率全面提升。

5.1.1.3 中国制造2025

新中国成立尤其是改革开放以来,我国制造业持续快速发展,建成了门类齐全、独立完整的产业体系,有力推动工业化和现代化进程,显著增强综合国力,支撑我世界大国地位。然而,与世界先进水平相比,我国制造业仍然大而不强,在自主创新能力、资源利用效率、产业结构水平、信息化程度、质量效益等方面差距明显,转型升级和跨越发展的任务紧迫而艰巨。(www.xing528.com)

当前,新一轮科技革命和产业变革与我国加快转变经济发展方式形成历史性交汇,国际产业分工格局正在重塑。必须紧紧抓住这一重大历史机遇,按照“四个全面”战略布局要求,实施制造强国战略,加强统筹规划和前瞻部署,力争通过三个十年的努力,到新中国成立一百年时,把我国建设成为引领世界制造业发展的制造强国,为实现中华民族伟大复兴的中国梦打下坚实基础。

2015年5月19日,经李克强总理签批,国务院印发《中国制造2025》,部署全面推进实施制造强国战略。这是我国实施制造强国战略第一个十年的行动纲领。

《中国制造2025》提出,坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,坚持“市场主导、政府引导,立足当前、着眼长远,整体推进、重点突破,自主发展、开放合作”的基本原则,通过“三步走”实现制造强国的战略目标:第一步,到2025年迈入制造强国行列;第二步,到2035年我国制造业整体达到世界制造强国阵营中等水平;第三步,到新中国成立一百年时,我制造业大国地位更加巩固,综合实力进入世界制造强国前列。《中国制造2025》,是我国实施制造强国战略第一个十年的行动纲领。

1)战略目标

立足国情,立足现实,力争通过“三步走”实现制造强国的战略目标。

第一步:力争用十年时间,迈入制造强国行列。

到2020年,基本实现工业化,制造业大国地位进一步巩固,制造业信息化水平大幅提升。掌握一批重点领域关键核心技术,优势领域竞争力进一步增强,产品质量有较大提高。制造业数字化、网络化、智能化取得明显进展。重点行业单位工业增加值能耗、物耗及污染物排放明显下降。

到2025年,制造业整体素质大幅提升,创新能力显著增强,全员劳动生产率明显提高,两化(工业化和信息化)融合迈上新台阶。重点行业单位工业增加值能耗、物耗及污染物排放达到世界先进水平。形成一批具有较强国际竞争力的跨国公司和产业集群,在全球产业分工和价值链中的地位明显提升。

第二步:到2035年,我国制造业整体达到世界制造强国阵营中等水平。创新能力大幅提升,重点领域发展取得重大突破,整体竞争力明显增强,优势行业形成全球创新引领能力,全面实现工业化。

第三步:新中国成立一百年时,制造业大国地位更加巩固,综合实力进入世界制造强国前列。制造业主要领域具有创新引领能力和明显竞争优势,建成全球领先的技术体系和产业体系。

2020年和2025年我国制造业主要指标见表5-1。

表5-1 2020年和2025年我国制造业主要指标

2)核心内容

中国制造2025的核心内容是加快推动新一代信息技术与制造技术融合发展,把智能制造作为两化深度融合的主攻方向,着力发展智能装备和智能产品,推进生产过程智能化,培育新型生产方式,全面提升企业研发、生产、管理和服务的智能化水平。具体包括:

(1)研究制定智能制造发展战略。编制智能制造发展规划,明确发展目标、重点任务和重大布局。加快制定智能制造技术标准,建立完善智能制造和两化融合管理标准体系。强化应用牵引,建立智能制造产业联盟,协同推动智能装备和产品研发、系统集成创新与产业化。促进工业互联网、云计算、大数据在企业研发设计、生产制造、经营管理销售服务等全流程和全产业链的综合集成应用。加强智能制造工业控制系统网络安全保障能力建设,健全综合保障体系。

(2)加快发展智能制造装备和产品。组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,突破新型传感器、智能测量仪表、工业控制系统、伺服电机及驱动器和减速器等智能核心装置,推进工程化和产业化。加快机械、航空、船舶、汽车、轻工、纺织、食品、电子等行业生产设备的智能化改造,提高精准制造、敏捷制造能力。统筹布局和推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。

(3)推进制造过程智能化。在重点领域试点建设智能工厂/数字化车间,加快人机智能交互、工业机器人、智能物流管理、增材制造等技术和装备在生产过程中的应用,促进制造工艺的仿真优化、数字化控制、状态信息实时监测和自适应控制。加快产品全生命周期管理、客户关系管理、供应链管理系统的推广应用,促进集团管控、设计与制造、产供销一体、业务和财务衔接等关键环节集成,实现智能管控。加快民用爆炸物品、危险化学品、食品、印染、稀土农药等重点行业智能检测监管体系建设,提高智能化水平。

(4)深化互联网在制造领域的应用。制定互联网与制造业融合发展的路线图,明确发展方向、目标和路径。发展基于互联网的个性化定制、众包设计、云制造等新型制造模式,推动形成基于消费需求动态感知的研发、制造和产业组织方式。建立优势互补、合作共赢的开放型产业生态体系。加快开展物联网技术研发和应用示范,培育智能监测、远程诊断管理、全产业链追溯等工业互联网新应用。实施工业云及制造业大数据创新应用试点,建设一批高质量的工业云服务和制造业大数据平台,推动软件与服务、设计与制造资源、关键技术与标准的开放共享。

(5)加强互联网基础设施建设。加强工业互联网基础设施建设规划与布局,建设低时延、高可靠、广覆盖的工业互联网。加快制造业集聚区光纤网、移动通信网和无线局域网的部署和建设,实现信息网络宽带升级,提高企业宽带接入能力。针对信息物理系统网络研发及应用需求,组织开发智能控制系统、工业应用软件、故障诊断软件和相关工具、传感和通信系统协议,实现人、设备与产品的实时联通、精确识别、有效交互与智能控制。

3)重点领域

中国制造2025瞄准新一代信息技术、高端装备、新材料、生物医药等战略重点,引导社会各类资源集聚,推动优势和战略产业快速发展。

(1)新一代信息技术产业。集成电路及专用装备。着力提升集成电路设计水平,不断丰富知识产权(IP)核和设计工具,突破关系国家信息与网络安全及电子整机产业发展的核心通用芯片,提升国产芯片的应用适配能力。掌握高密度封装及三维(3D)微组装技术,提升封装产业和测试的自主发展能力。形成关键制造装备供货能力。

信息通信设备。掌握新型计算、高速互联、先进存储、体系化安全保障等核心技术,全面突破第五代移动通信(5G)技术、核心路由交换技术、超高速大容量智能光传输技术、“未来网络”核心技术和体系架构,积极推动量子计算、神经网络等发展。研发高端服务器、大容量存储、新型路由交换、新型智能终端、新一代基站、网络安全等设备,推动核心信息通信设备体系化发展与规模化应用。

操作系统及工业软件。开发安全领域操作系统等工业基础软件。突破智能设计与仿真及其工具、制造物联与服务、制造业大数据处理等高端工业软件核心技术,开发自主可控的高端工业平台软件和重点领域应用软件,建立完善工业软件集成标准与安全测评体系。推进自主工业软件体系化发展和产业化应用。

(2)高档数控机床和机器人。高档数控机床。开发一批精密、高速、高效、柔性数控机床与基础制造装备及集成制造系统。加快高档数控机床、增材制造等前沿技术和装备的研发。以提升可靠性、精度保持性为重点,开发高档数控系统、伺服电机、轴承、光栅等主要功能部件及关键应用软件,加快实现产业化。加强用户工艺验证能力建设。

机器人。围绕汽车、机械、电子、危险品制造、国防军工、化工、轻工等工业机器人、特种机器人,以及医疗健康、家庭服务、教育娱乐等服务机器人应用需求,积极研发新产品,促进机器人标准化、模块化发展,扩大市场应用。突破机器人本体、减速器、伺服电机、控制器、传感器与驱动器等关键零部件及系统集成设计制造等技术瓶颈。

(3)航空航天装备。航空装备。加快大型飞机研制,适时启动宽体客机研制,鼓励国际合作研制重型直升机;推进干支线飞机、直升机、无人机和通用飞机产业化。突破高推重比、先进涡桨(轴)发动机及大涵道比涡扇发动机技术,建立发动机自主发展工业体系。开发先进机载设备及系统,形成自主完整的航空产业链。

航天装备。发展新一代运载火箭、重型运载器,提升进入空间能力。加快推进国家民用空间基础设施建设,发展新型卫星等空间平台与有效载荷、空天地宽带互联网系统,形成长期持续稳定的卫星遥感、通信、导航等空间信息服务能力。推动载人航天、月球探测工程,适度发展深空探测。推进航天技术转化与空间技术应用。

(4)海洋工程装备及高技术船舶。大力发展深海探测、资源开发利用、海上作业保障装备及其关键系统和专用设备。推动深海空间站、大型浮式结构物的开发和工程化。形成海洋工程装备综合试验、检测与鉴定能力,提高海洋开发利用水平。突破豪华邮轮设计建造技术,全面提升液化天然气船等高技术船舶国际竞争力,掌握重点配套设备集成化、智能化、模块化设计制造核心技术。

(5)先进轨道交通装备。加快新材料、新技术和新工艺的应用,重点突破体系化安全保障、节能环保、数字化智能化网络化技术,研制先进可靠适用的产品和轻量化、模块化、谱系化产品。研发新一代绿色智能、高速重载轨道交通装备系统,围绕系统全寿命周期,向用户提供整体解决方案,建立世界领先的现代轨道交通产业体系。

(6)节能与新能源汽车。继续支持电动汽车、燃料电池汽车发展,掌握汽车低碳化、信息化、智能化核心技术,提升动力电池、驱动电机、高效内燃机、先进变速器、轻量化材料、智能控制等核心技术的工程化和产业化能力,形成从关键零部件到整车的完整工业体系和创新体系,推动自主品牌节能与新能源汽车同国际先进水平接轨。

(7)电力装备。推动大型高效超净排放煤电机组产业化和示范应用,进一步提高超大容量水电机组、核电机组、重型燃气轮机制造水平。推进新能源和可再生能源装备、先进储能装置、智能电网用输变电及用户端设备发展。突破大功率电力电子器件、高温超导材料等关键元器件和材料的制造及应用技术,形成产业化能力。

(8)农机装备。重点发展粮、棉、油、糖等大宗粮食和战略性经济作物育、耕、种、管、收、运、贮等主要生产过程使用的先进农机装备,加快发展大型拖拉机及其复式作业机具、大型高效联合收割机等高端农业装备及关键核心零部件。提高农机装备信息收集、智能决策和精准作业能力,推进形成面向农业生产的信息化整体解决方案。

(9)新材料。以特种金属功能材料、高性能结构材料、功能性高分子材料、特种无机非金属材料和先进复合材料为发展重点,加快研发先进熔炼、凝固成型、气相沉积、型材加工、高效合成等新材料制备关键技术和装备,加强基础研究和体系建设,突破产业化制备瓶颈。积极发展军民共用特种新材料,加快技术双向转移转化,促进新材料产业军民融合发展。高度关注颠覆性新材料对传统材料的影响,做好超导材料、纳米材料、石墨烯、生物基材料等战略前沿材料提前布局和研制。加快基础材料升级换代。

(10)生物医药及高性能医疗器械。发展针对重大疾病的化学药、中药、生物技术药物新产品,重点包括新机制和新靶点化学药、抗体药物、抗体偶联药物、全新结构蛋白及多肽药物、新型疫苗、临床优势突出的创新中药及个性化治疗药物。提高医疗器械的创新能力和产业化水平,重点发展影像设备、医用机器人等高性能诊疗设备,全降解血管支架等高值医用耗材,可穿戴、远程诊疗等移动医疗产品。实现生物3D打印、诱导多能干细胞等新技术的突破和应用。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈