首页 理论教育 ng Textbook References

ng Textbook References

时间:2023-06-21 理论教育 版权反馈
【摘要】:[1]Ho rn,B.K.P.,Robot V ision,MIT Press,Massachusetts,1986.[2]Strang,G.,In troduction to Linear A lgebra,W ellesley-Cam bridge Press,W ellesley,2016.[3]Gonzalez,R.C.,&P.W intz,D igital Im age Processi

ng Textbook References

[1]Ho rn,B.K.P.,Robot V ision,MIT Press,Massachusetts,1986.

[2]Strang,G.,In troduction to Linear A lgebra,W ellesley-Cam bridge Press,W ellesley,2016.

[3]Gonzalez,R.C.,&P.W intz,D igital Im age Processing,Addison-W esley,Read ing,Massachusetts,2011.

[4]W ai Chung Liu,et.al.,“An integrated photogramm etric and photoclinom etric app roach for illum ination-invariant pixel-resolution 3D m app ing of the lunar surface,”ISPRS Journal of Photogramm etry and Rem ote Sensing,2019.

[5]Marr,D.,V ision:A Com putational Investigation in to the Hum an Represen tation and Processing of V isual Inform ation,W.H.Freem an&Co.,San Francisco,1982.

[6]Oppenheim,A.V.,&A.S.W illsky,Signals and System s,Prentice-Hall,Englewood C liあs,New Jersey,2010.

[7]W iener,N.,Extrapo lation,In terpolatation,and Sm oothing of Stationary T im e Series w ith Engineering Applications,MIT Press,Cam bridge,Massachusetts,1966.

[8]B rady,J.M.,&Ho rn,B.K.P.(1983)“Rotationally Symm etric Operators for Su rface Interpolation,”Com puter V ision,Graphics and Im age Processing,Vol.22,No.1,pp.70-95,Ap ril.

[9]B rooks,M.J.,&Ho rn,B.K.P.(1985)“Shape and Sou rce from Shading,”Proc.of the In tern.Join t Conf.on Artificial In telligence,Los Angeles,California,pp.932-936,18-23 August.

[10]B russ,A.R.,&Ho rn,B.K.P.(1983)“Passive Navigation,”Com puter V ision,Graphics and Im age Processing,Vol.21,No.1,pp.3-20,January.

[11]Ho rn,B.K.P.(1968)“Focusing,”MIT A I Laboratory Mem o 160,May.

[12]Ho rn,B.K.P.(1970)“Shape from Shad ing:A Method for Ob taining the Shape of a Sm ooth Opaque Ob ject from One V iew,”MIT Pro ject MAC Internal Report TR-79&MIT A I Laboratory Technical Report 232,Novem ber.

[13]Ho rn,B.K.P.(1971)“The Bin ford-Horn Linef inder,”MIT A I Laboratory Mem o 285,Ju ly.

[14]Ho rn,B.K.P.(1972)“V ISMEM:A Bag of‘Robotics’Form u lae,”MIT A ILaboratory W orking Paper 34,Decem ber.

[15]Ho rn,B.K.P.(1974)“Determ ining Lightness from an Im age,”Com puter Graphics and Im age Processing,Vol.3,No.1,pp.277-299,Decem ber.

[16]Ho rn,B.K.P.(1974)“The App lication of Linear System s Analysis to Im age Processing—Som e Notes,”MIT A I Laboratory W orking Paper 100.

[17]Ho rn,B.K.P.(1975a)“Obtaining Shape from Shad ing In form ation,”Chap ter 4 in The Psycho logy of Com puter V ision,P.H.W inston(ed.),McGraw-Hill Book Co.,New York,pp.115-155.

[18]Ho rn,B.K.P.(1975b)“A Prob lem in Com puter V ision:O rienting Silicon Integrated Circuit Chips for Lead Bond ing,”Com puter Graphics and Im age Processing,Vol.4,No.1,pp.294-303,Sep tem ber.

[19]Ho rn,B.K.P.(1977)“Im age Intensity Understand ing,”Artificial In telligence,Vol.8,No.2,pp.201-231,Ap ril.

[20]Ho rn,B.K.P.(1979)“Sequins and Quills—Rep resentations for Surface Topography,”MIT A I Laboratory Mem o 536,May.

[21]Ho rn,B.K.P.(1981)“Hill-Shad ing and the Ref lectance Map,”Proc.of the IEEE,Vol.69,No.1,pp.14-47,January.

[22]Ho rn,B.K.P.(1983)“Non-Correlation Methods for Stereo Matching,”Pho togramm etric Engineering and Rem ote Sensing,Vol.49,No.4,pp.536-536,Ap ril.

[23]Ho rn,B.K.P.(1983)“The Least Energy Cu rve,”ACMTrans.on Mathem atica l Software,Vol.9,No.4,pp.441-460,Decem ber.

[24]Ho rn,B.K.P.(1984a)“Exact Rep roduction of Colored Im ages,”Com puter V ision,Graphics and Im age Processing,Vol.26,No.2,pp.135-167,May.

[25]Ho rn,B.K.P.(1984b)“Ex tended Gaussian Im ages,”Proc.of the IEEE,Vol.72,No.12,pp.1671-1686,Decem ber.

[26]Ho rn,B.K.P.,&B.L.Bachm an(1978)“Using Synthetic Im ages to Register Real Im ages w ith Surface Models,”Comm unications of the ACM,Vol.21,No.11,pp.914-924,Novem ber.

[27]Ho rn,B.K.P.,&M.J.B rooks(1985)“The Variational App roach to Shape from Shading,”MIT A I Laboratory Mem o 813,March.

[28]Ho rn,B.K.P.,&K.Ikeuchi(1984)“The Mechanical Manipu lation of Random ly O riented Parts,”Scien tific Am erican,Vol.251,No.2,pp.100-111,August.

[29]Ho rn,B.K.P.,&B.G.Schunck(1981)“Determ ining Op tical F low,”Artificial Intelligence,Vol.17,Nos.1-3,pp.185-203,August.

[30]Ho rn,B.K.P.,&R.W.Sjoberg(1979)“Calcu lating the Ref lectance Map,”App lied Optics,Vol.18,No.11,pp.1770-1779,June.

[31]Ho rn,B.K.P.,&E.J.W eldon(1985)“Filtering C losed Curves,”Proc.Com puter V ision and Pattern Recognition Conf.San Francisco,California,pp.478-484,19-23 June.

[32]Ho rn,B.K.P.,R.J.W oodham,&W.Silver(1978)“Determ ining Shape and Ref lectance Using Mu ltip le Im ages,”MIT A I Laboratory Mem o 490,August.

[33]Ikeuchi,K.,&Ho rn,B.K.P.(1981)“Num erical Shape from Shading and O ccluding Boundaries,”Artificial In telligence,Vol.17,Nos.1-3,pp.141-184,August.

[34]Ikeuchi,K.,&Ho rn,B.K.P.(1984)“Picking up an Ob ject from a Pile of Ob jects,”in Robotics Research:The First In ternational Sym posium,J.M.B rady&R.Pau l(eds.),MIT Press,Cam b ridge,Massachusetts,pp.139-162.

[35]Ikeuchi,K.,H.K.Nishihara,Ho rn,B.K.P.,P.Sobalvarro,&S.Nagata,(1984)“Determ ining Grasp Points Using Photom etric Stereo and the PRISMBinocu lar Stereo System,”MIT A I Laboratory Mem o 772,August.

[36]Negahdaripour,S.,&Ho rn,B.K.P.(1985)“Determ ining 3-D Motion of P lanar Ob jects from Im age B rightness Measurem ents,”Proc.of the In tern.Join t Conf.on Artificial In telligence,Los Angeles,California,pp.898-901,18-23 August.

[37]Sjoberg,R.J.,&Ho rn,B.K.P.(1983)“A tm ospheric Eあects in Satellite Im aging of Mountainous Terrain,”App lied Optics,Vol.22,No.11,pp.1702-1716,June.

[38]W ang L.,&Ho rn,B.K.P.&Strang,G.(2016)“Eigenvalue and Eigenvector Analysis of Stability for a Line of Traきc,”Studies in Applied Mathem atics,Sep tem ber.

[39]Ho rn,B.K.P.&W ang,L.(2017)“W ave Equation of Supp ressed Traきc F low Instabilities,”IEEE Transactions on In telligen t Transportation System s,Decem ber.

[40]W ang,L.&Ho rn,B.K.P.(2018)“Machine V ision to A lert Roadside Personnel of Night Traきc Th reats,”IEEE Transactions on In telligen t Transportation System s,Vol.19,No.10,October.

[41]W ang L.&Ho rn,B.K.P.(2019)“Mu ltinode Bilateral ControlModel,”IEEE Transactions on Autom atic Con trol,Vol.64,No.10,O ctober.

[42]W ang L.&Ho rn,B.K.P.(2020a)“On the Stability Analysis of Mixed Traきc w ith Vehicles under Car-Follow ing and Bilateral Control,”IEEE Transactions on Autom atic Con trol,Vol.65,No.7,pp.3076-3083,Ju ly.

[43]W ang L.&Ho rn,B.K.P.(2020b)“On the Chain-Stability of Bilateral Control Model,”IEEE Transactions on Autom atic Con tro l,Vol.65,No.8,pp.3397-3408,August.

[44]W ang L.&Ho rn,B.K.P.(2020c)“T im e-to-Contact control:im p roving safety and reliability of au tonom ous vehicles,”In ternational Journal of Bio-Inspired Com putation,Vol.16,No.2,pp.68-78,2020.

[45]Ho rn B.K.P.,“Density Reconstruction Using A rbitrary Ray Sam p ling Schem es,”Proceedings of the IEEE,Vol.66,No.5,May 1978,pp.551-562.

[46]Ho rn B.K.P.,“Fan-Beam Reconstruction Methods,”Proceedings of the IEEE,Vol.67,No.12,Decem ber 1979,pp.1616-1623.

[47]J.Radon,“Uber die Bestimm ung von Funktionen du tch ih re Integralwerte Iangs gew isser Mannigfaltikeiten,”Ber.Saechsische Akad.W iSS.,VOI.69,pp.262-278,1917.

[48]Liu J.,Fau lkner G.,Choubey B.Choubey,Collins S.and O’B rien D.C.,”An op tical transceiver powered by on-chip solar cells for IoT sm art dusts w ith Op ticalW ireless Comm unications”,IEEE Internet of Things Journal,vol.6,issue 2,pp.3248-3256,Ap ril,2019.

[49]Liu J.,Zhou Y.,Fau lkner G.,O’B rien D.C.and Collins S.,”Op tical receiver front end for op tically powered sm art dust”,International Jou rnal of Circuit Theory and App lications,vol.43,issue 7,pp.840-853,Ju ly 2015.

[50]Liu J.,Fau lkner G.,Choubey B.Choubey,Liu J.,Chen R.,O’B rien D.C.and Collins S.,”Op tically powered energy source in a standard CMOS p rocess for integration in sm art dust app lications,”IEEE Journal of E lectron Devices Society,vol.2,No.6,pp.158-163,Nov.2014.

[51]Horiguchi F.,”Integration of series-connected on-chip solar battery in a trip le-well CMOS LSI”,IEEE Transactions on E lectron Devices,vol.59,no.6,pp.1580-1584,June 2012.

[52]Law M.F.and Berm ak A.,”High-voltage generation w ith stacked photodiodes in standard CMOS p rocess”,IEEE E lectron Device Letters,vol.31,no.12,pp.1425-1427,Dec.2010.

[53]Hong G.and Han G.,”Design op tim ization of photovoltaic cell stacking in a trip lewell CMOS p rocess”,IEEE Transactions on E lectron Devices,vol.67,no.6,pp.2381-2385,June 2020.

[54]Nakam ura J.,Im age Sensors and Signal Processing for D igital Still Cam eras,Taylor&Francis Group,page 285,2006.

[55]Liu J.,Fau lkner G.,Choubey B.Choubey,Collins S.and O’B rien D.C.,”A tunab le passband logarithm ic photodetector for IoT sm art dusts”,IEEE Sensors Journal,vol.18,issue 13,pp.5321-5328,Ju ly,2018.

[56]Chou W.F.,Yeh S.F.,Chiu C.F.and Hsieh C.C.,”A Linear-Logarithm ic CMOS Image Sensor W ith Pixel-FPN Reduction and Tunab le Response Cu rve”,IEEE Sensors Journal,vol.14,no.5,pp.1625-1632,May 2014.

[57]Spy ros K.,Bart D.,Danny S.,And re A.,D irk U.and Jan B.,”A logarithm ic response CMOS im age sensor w ith on-chip calib ration”,IEEE Journal of Solid-State Circuits,vol.35,no.8,pp.1146-1152,August,2000.

[58]Ishikawa T.,Ueno M.,Nakaki Y.,Endo K.,Ohta Y.,Nakanishi J.,Kosasayam a Y.,Yagi H.,Sone T.,and K im ata M.,”Perform ance of 320×240 Uncooled IRFPA w ith SO ID iode Detectors”,In Proceed ings of SPIE,vol.4130,pages 152-159,2000.

[59]Pomm erenig D.H.,Enders D.D.,and Meinhard t T.E.,”Hybrid silicon focal p lane array developm ent:An update”,in Proceedings of SPIE-The International Society for Op tical Engineering,vol.267,pp.23-30,1981.

[60]Naoki Y.,Hirofum i Y.,Masafum i K.,Jun ji N.,Shinsuke N.and Natsuro T.,”1040×1040 elem ent PtSi Schottky-barrier IR im age sensor”,International E lectron Devices Meeting,pages 175-178,W ashington,DC,USA,1991.

[61]Redm on J,D ivvala S,Girshick R,et al.You on ly look once:Unif ied,real-tim e object detection,Proceedings of the IEEE con ference on com pu ter vision and pattern recognition.2016:779-788.

[62]Redm on J,Farhad i A.YOLO 9000:better,faster,stronger,Proceed ings of the IEEE con ference on com puter vision and pattern recognition.2017:7263-7271.(www.xing528.com)

[63]Redm on J,Farhad i A.Yolov3:An increm ental im p rovem ent.arX iv p rep rint arXiv:1804.02767,2018.

[64]Bochkovskiy A,W ang C Y,Liao HY M.Yolov4:Op tim al speed and accu racy of ob ject detection.arX iv p rep rint arX iv:2004.10934,2020.

[65]W ong A,Fam uori M,Shaf iee MJ,et al.Yolo nano:a high ly com pact you on ly look once convolu tional neural network for ob ject detection,2019 Fifth W orkshop on Energy Eきcient Machine Learning and Cognitive Com pu ting-Neu r IPS Ed ition(EMC2-NIPS).IEEE,2019:22-25.

[66]Cai Y,Li H,Yuan G,et al.Yolobile:Real-tim e ob ject detection on m obile devices via com p ression-com pilation co-design.arX iv p rep rint arX iv:2009.05697,2020.

[67]Chen Q,W ang Y,Yang T,et al.You on ly look one-level feature,Proceed ings of the IEEE con ference on com pu ter vision and pattern recognition.2021:13039-13048.

[68]Ge Z,Liu S,W ang F,et al.Yolox:Exceed ing yolo series in 2021.arX iv p rep rint arX iv:2107.08430,2021.

[69]Yu J,Jiang Y,W ang Z,et al.Unitbox:An advanced ob ject detection network,Proceed ings of the 24th ACMinternational con ference on Mu ltim ed ia.2016:516-520.

[70]Rezatof ighi H,Tsoi N,Gwak J Y,et al.Generalized intersection over union:A m etric and a loss for bounding box regression,Proceed ings of the IEEE con ference on com pu ter vision and pattern recognition.2019:658-666.

[71]Zheng Z,W ang P,Liu W,et al.D istance-IoU loss:Faster and better learning for bound ing box regression,Proceed ings of the AAA I Con ference on A rtif icial Intelligence.2020,34(07):12993-13000.

[72]Zheng Z,W ang P,Ren D,et al.Enhancing geom etric factors in m odel learning and in ference for ob ject detection and instance segm entation.IEEE Transactions on Cybernetics,2021.

[73]V iola P A,Jones MJ.Rapid Ob ject Detection using a Boosted Cascade of Sim p le Featu res,Com puter V ision and Pattern Recognition,2001.CVPR 2001.Proceedings of the 2001 IEEE Com puter Society Con ference on.IEEE,2001.

[74]Lienhart R,Mayd t J.An ex tended set of haar-like featu res for rapid ob ject detection,Proceed ings.international con ference on im age p rocessing.IEEE,2002,1:I-I.

[75]Dalal N,Triggs B.Histogram s of oriented grad ients for hum an detection,2005 IEEE com pu ter society con ference on com puter vision and pattern recognition(CVPR’05).Ieee,2005,1:886-893.

[76]Felzenszwalb P,McA llester D,Ram anan D.A d iscrim inatively trained,m u ltiscale,deform ab le part m odel,2008 IEEE con ference on com pu ter vision and pattern recognition.Ieee,2008:1-8.

[77]LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning app lied to docum ent recognition.Proceed ings of the IEEE,1998,86(11):2278-2324.

[78]K rizhevsky A,Su tskever I,Hinton GE.Im agenet classif ication w ith deep convolutional neural networks.Advances in neu ral in form ation p rocessing system s,2012,25.

[79]Lin M,Chen Q,Yan S.Network in network.arX iv p rep rint arX iv:1312.4400,2013.

[80]Szegedy C,Liu W,Jia Y,et al.Going deeper w ith convolu tions,Proceed ings of the IEEE con ference on com pu ter vision and pattern recognition.2015:1-9.

[81]Sim onyan K,Zisserm an A.Very deep convolu tional networks for large-scale im age recognition.arX iv p rep rint arX iv:1409.1556,2014.

[82]Ioあe S,Szegedy C.Batch norm alization:A ccelerating deep network training by reducing internal covariate shift,International con ference on m achine learning.PMLR,2015:448-456.

[83]Szegedy C,Vanhoucke V,Ioあe S,et al.Rethinking the incep tion architectu re for com pu ter vision,Proceed ings of the IEEE con ference on com pu ter vision and pattern recognition.2016:2818-2826.

[84]He K,Zhang X,Ren S,et al.Deep residual learning for im age recognition,Proceedings of the IEEE con ference on com pu ter vision and pattern recognition.2016:770-778.

[85]Szegedy C,Ioあe S,Vanhoucke V,et al.Incep tion-v4,incep tion-resnet and the impact of residual connections on learning,Thirty-f irst AAA I con ference on artif icial intelligence.2017.

[86]Howard A G,Zhu M,Chen B,Kalenichenko D,W ang W,W eyand T,And reetto M,Adam H.MobileNets:Eきcient Convolu tional Neural Networks for Mobile V ision App lications.2017.

[87]Girshick R,Donahue J,Darrell T,et al.Rich featu re hierarchies for accu rate ob ject detection and sem antic segm entation,Proceed ings of the IEEE con ference on computer vision and pattern recognition.2014:580-587.

[88]He K,Zhang X,Ren S,et al.Spatial pyram id pooling in deep convolu tional networks for visual recognition.IEEE transactions on pattern analysis and m achine intelligence,2015,37(9):1904-1916.

[89]Girshick R.Fast R-CNN,Proceed ings of the IEEE international con ference on computer vision.2015:1440-1448.

[90]Ren S,He K,Girshick R,et al.Faster R-CNN:Towards real-tim e ob ject detection w ith region p roposal networks.Advances in neu ral in form ation p rocessing system s,2015,28.

[91]Lin T Y,et.al.Featu re Py ram id Networks for Ob ject Detection.2017 IEEE Con ference on Com pu ter V ision and Pattern Recognition(CVPR),2017.

[92]Szegedy C,Toshev A,Erhan D.Deep neu ral networks for ob ject detection.Advances in neu ral in form ation p rocessing system s,2013,26.

[93]Serm anet P,Eigen D,Zhang X,et al.Overfeat:Integrated recognition,localization and detection using convolutional networks.arX iv p rep rint arX iv:1312.6229,2013.

[94]Liu W,Anguelov D,Erhan D,et al.SSD:Single shot m u ltibox detector,European con ference on com puter vision.Sp ringer,Cham,2016:21-37.

[95]Lin T Y,Goyal P,Girshick R,et al.Focal loss for dense ob ject detection,Proceedings of the IEEE international con ference on com puter vision.2017:2980-2988.

[96]Law H,Deng J.Cornernet:Detecting ob jects as paired keypoints,Proceed ings of the Eu ropean con ference on com pu ter vision(ECCV).2018:734-750.

[97]Duan K,Bai S,X ie L,et al.Centernet:Keypoint trip lets for ob ject detection,Proceedings of the IEEE international con ference on com pu ter vision.2019:6569-6578.

[98]Zhu C,He Y,Savvides M.Featu re selective anchor-free m odu le for single-shot object detection,Proceedings of the IEEE con ference on com pu ter vision and pattern recognition.2019:840-849.

[99]Zhang X,et.al.Com bine Ob ject Detection w ith Skeleton-Based Action Recognition to Detect Sm oking Behavior.The 5th International Con ference on V ideo and Im age Processing(ICV IP 2021).

[100]Zou Z,Shi Z,Guo Y,et al.Ob ject detection in 20 years:A survey.arX iv p rep rint arX iv:1905.05055,2019.

[101]《机器视觉》,Berthold K.P.Horn(著),王亮,蒋新兰(译),中国青年出版社,2014.

[102]黄甫全,伍晓琪,唐玉溪,等.双师课堂课程开发引论:缘起,主题与方法.电化教育研究,2020.

[103]黄甫全,伍晓琪,丘诗盈.A I全科教师主讲课程学习成效试验研究.开放教育研究,2021,1:32-43.

[104]黄甫全,李义茹,曾文婕,等.精准学习课程引论--教育神经科学研究愿景.现代基础教育研究,2018,29(1):5-14.

[105]黄甫全.研发师德高尚的A I教师--德育神经科学和人工智能与有效教学论的交融愿景.中国德育,2019,5.

[106]王济军.基于表情识别技术的情感计算在现代远程教育中的应用研究.天津师范大学,2005.

[107]王济军,马希荣,何建芬.现代远程教育中情感缺失的调查与对策研究.现代远距离教育,2007(4):29-31.

[108]孙亚丽.基于人脸检测的小学生课堂专注度研究.湖北师范大学,2016.

[109]段巨力.基于机器视觉的学生上课专注度的分析评测系统.浙江工商大学,2017.

[110]李文倩.面向远程教育的学习专注度识别方法研究.杭州电子科技大学,2018.

[111]唐康.人脸检测中表情识别研究及其在课堂教学评价中的应用.重庆:重庆师范大学,2016.

[112]张双喜.基于深度学习的人脸识别及专注度判别方法研究与应用.南京:南京师范大学,2019.

[113]钟马驰,张俊朗,蓝扬波,等.基于人脸检测和模糊综合评判的在线教育专注度研究.计算机科学,2020,47(11A):196-203.

[114]任婕.基于机器视觉的学生专注度综合评价研究.北京工业大学,2020.

[115]张璟.基于表情识别的课堂专注度分析的研究.山西大学,2020.

[116]袁霞.基于多维度特征融合的课堂专注度检测研究.江西财经大学,2020.

[117]陶溢.基于面部表情和头部姿态识别的课堂专注度分析与评价研究.云南师范大学,2020.

[118]邓小海.智慧教室与课堂智能教学评估的应用研究.杭州电子科技大学,2020.

[119]王鹏程,王迪.专注度识别技术在教学监测中的应用研究.电脑知识与技术,2020.

[120]袁源.远程教育中不良表情的识别研究.四川师范大学,2014.

[121]李柯泉,陈燕,刘佳晨,等.基于深度学习的目标检测算法综述[J/OL].计算机工程:1-17.

[122]吕璐,程虎,朱鸿泰,等.基于深度学习的目标检测研究与应用综述.电子与封装,2022,22(1):010307.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈