首页 理论教育 数据选择器的实际应用举例

数据选择器的实际应用举例

时间:2023-06-21 理论教育 版权反馈
【摘要】:采用8选1数据选择器74LS151可实现任意三输入变量的组合逻辑函数。图3.6用4选1数据选择器实现全加器当函数输入变量数大于数据选择器地址端口数时,可能随着选用函数输入变量作地址的方案不同,而使其设计结果不同,需对几种方案比较,以获得最佳方案。采用逻辑函数对照比较的方法,把全加器的逻辑函数与数据选择器的逻辑表达式相比较。

数据选择器的实际应用举例

【例1】 用8选1数据选择器74LS151实现逻辑函数img

采用8选1数据选择器74LS151可实现任意三输入变量的组合逻辑函数。

作出函数L的真值表,见表3.3,将函数L真值表与8选1数据选择器的功能表相比较,可知只要将输入变量A、B、C作为8选1数据选择器的地址码A2、A1、A0,并且使8选1数据选择器的各数据输入D0~D7分别与函数L的输出值一一对应,就能实现要求的逻辑函数。即:

则8选1数据选择器的输出Y便实现了函数L。

接线图如图3.4所示。

表3.3 逻辑函数L的真值表

图3.4 用8选1数据选择器实现

L=Aimg+imgC+Bimg

显然,采用具有n个地址端的数据选择器实现n变量的逻辑函数时,应将函数的输入变量加到数据选择器的地址端(A),选择器的数据输入端(D)按次序以函数输出值来赋值

【例2】 用4选1数据选择器74LS153实现一位二进制全加器。(www.xing528.com)

全加器实现1位二进制的加法,它由被加数A、加数B和来自低位的进位数Ci相加,输出全加和S与向高位的进位Co。逻辑符号图如图3.5所示。

全加器的真值表见表3.4。

表3.4 全加器的真值表

图3.5 全加器逻辑符号

根据真值表写出逻辑函数为

根据74LS153的功能表,可知当使能端为低电平时,数据选择器的输出端1Y和2Y的逻辑表达式可写为

采用逻辑函数对照比较的方法,把全加器的逻辑函数与数据选择器的逻辑表达式相比较。如果把式(3.1)、式(3.2)分别与式(3.3)、式(3.4)相比较,则可以得出如下结果:若A接至A1,B接至A0,并且使双4选1数据选择器的8个数据输入端分别置为1D0=1D3=Ciimg、2D0=0、2D1=2D2=Ci、2D3=1,则选择器输出端1Y、2Y分别实现了全加和S和进位Co。实验电路图如图3.6所示。

图3.6 用4选1数据选择器实现全加器

当函数输入变量数大于数据选择器地址端口数时,可能随着选用函数输入变量作地址的方案不同,而使其设计结果不同,需对几种方案比较,以获得最佳方案。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈