【摘要】:也就是说,在这种情况下介质只产生一定的裂缝,或就地破碎松动,极限程度为就近抛掷,而无多余的能量造成爆破危害,这就是等能原理。假设介质破坏所需要的总能量为A,为破坏它由外界提供的能量为B。该原理符合能量准则,可视之为一个材料的破坏判据,即材料在某时某处一旦达到允许权限强度,它就在该处立即破坏一样。即便如此,该原理对建立经验或半经验的装药量公式仍有一定的指导意义。
根据爆破的对象、条件和要求,优选各种爆破参数,如孔径、孔深、孔距、排距和炸药单耗等,同时选用合适的炸药品种、合理的装药结构和起爆方式,以期使每个炮孔所装的炸药在其爆炸时所释放出的能量与破碎该孔周围介质所需的最低能量相等。也就是说,在这种情况下介质只产生一定的裂缝,或就地破碎松动,极限程度为就近抛掷,而无多余的能量造成爆破危害,这就是等能原理。
假设介质破坏所需要的总能量为A,为破坏它由外界提供的能量为B。若能量在做功过程中没有任何损失而全部被有效利用,此时应满足A=B,则介质便被破坏。但是在爆破过程中,炸药所释放出的能量并非全部都做有用功,而是有相当一部分转化为无用功,如声、光、热和震动以及部分从裂隙中逸出,则上式变为A=KB,其中K为一个小于1的炸药有效利用系数,它取决于炸药种类、药量、孔网参数、装药结构、堵塞状况、起爆方式、介质强度与介质破碎面积等诸多因素。(www.xing528.com)
该原理符合能量准则,可视之为一个材料的破坏判据,即材料在某时某处一旦达到允许权限强度,它就在该处立即破坏一样。但是它是十分理想的,作为主要破坏判据的装药量,其影响因素很多,又由于炸药爆炸反应过程十分复杂,所以迄今为止,关于药量的计算还没有建立起一套完整的公式。即便如此,该原理对建立经验或半经验的装药量公式仍有一定的指导意义。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。