首页 理论教育 用THz光子晶体实现高效能够量子效应优化

用THz光子晶体实现高效能够量子效应优化

时间:2023-06-15 理论教育 版权反馈
【摘要】:由于式和式适用于所有波段的电磁波,THz波段的光子晶体的基本结构和性质与光学波段没有本质区别。THz光子晶体的晶格周期与THz波长相当,在几十到几百微米量级。如图2.2所示,他们首次将THz光子晶体置于金属PPWG中传输,PPWG支持TEM模式,不仅不受板间隙宽度的限制,同时也是非色散的。图2.3THz光子晶体线缺陷;(b,c)光子晶体微腔及其谐振谱线[5]

用THz光子晶体实现高效能够量子效应优化

1.光子晶体的理论基础

光子晶体是波长量级的介质或金属材料在空间周期性排布形成的人工微结构,这使得此波长附近的电磁波在光子晶体中的波传播行为类似于固体物理电子在晶体中的行为,并具有一系列相似的物理概念。光子晶体可由布洛赫(Bloch)函数H k(r)描述:

式中,u k(r)满足Bloch周期性边界条件u k(r)=u k(r+R),其中R为晶格矢量,k为Bloch波矢,即R的倒格矢。H k(r)由波动方程决定:

式中,介电函数εr(r)=εr(r+R)。结合Bloch周期性边界条件求解该波动方程,可以获得本征值ω(k)和本征函数H k(r)。如图2.1所示,二维光子晶体带隙结构图就是本征值ω(k)与波矢k的色散关系曲线。

光子晶体具有有别于许多天然材料的特性,也为其带来了诸多应用。

(1)光子带隙特性。与晶体中的电子具有能带性质一样,光子晶体也具有传导模式和光子禁带,频率处在光子禁带频率范围内的光波将不能在光子晶体中传输,而是被完全反射和吸收。这一特性是光子晶体的根本属性,使得光子晶体可实现光开关、滤波等功能。

图2.1 典型光子晶体结构及二维光子晶体带隙图[1]

(2)光子局域特性。与晶体存在缺陷一样,光子晶体也可以具有图2.1所示的线缺陷和点缺陷:线缺陷形成光子晶体波导,使光局域在线缺陷中传播;点缺陷形成光子晶体微腔,使光高度局域在谐振腔中。这些特性使得光子晶体可用于波导、分束器和激光器谐振腔的设计。

(3)色散特性。光子晶体及其波导中传输的光波模式具有由器件结构和光子带隙决定的时间和空间色散,其使得光子晶体的群速度变得很小,可以用作慢光器件和调制器件,甚至可以使群折射率为负,对空间光束波前进行调控,典型的应用是作为亚波长平板透镜。(www.xing528.com)

(4)导模谐振特性。对于有限高度二维光子晶体,光子晶体平面外的电磁波耦合到光子晶体内后在光子带隙作用下发生干涉和共振,这被称为导模谐振效应,可以用于高灵敏传感。

2.THz光子晶体的特点

近些年,随着THz科学与技术的兴起,THz光子晶体的研究得到快速发展,对其传输性质和相关功能器件的研究报道较多,涉及分束器、滤波器、开关、调制、传感、超透镜、超棱镜等,但大多都是理论模拟,对材料选择、器件加工和实验技术的研究比较缺乏。由于式(2.19)和式(2.20)适用于所有波段的电磁波,THz波段的光子晶体的基本结构和性质与光学波段没有本质区别。抛开所使用材料在THz波段的性质,仅仅把器件的几何尺度扩展到THz波段来设计器件,将大大限制光子晶体在THz波段的研究和应用。只有将THz材料、器件加工和实验技术等因素综合起来考虑,才能反映THz光子晶体的特点。

THz光子晶体的晶格周期与THz波长相当,在几十到几百微米量级。二维光子晶体需要一定的柱高度或孔高度,实际是准三维结构,加工深度需要在100μm以上。普通半导体刻蚀工艺无法达到此深度,而对其加工的精度要求一般在微米量级,与微纳米光刻相比是很低的精度要求,因此普通半导体刻蚀工艺并不适合THz光子晶体的加工。而现代微机电系统(Micro-Electro-Mechanical System,MEMS)技术中的深度反应离子刻蚀、激光烧蚀、金刚石刀具微机械加工等工艺能够满足这种亚毫米尺度、微米精度的加工要求。

Grischkowsky等对二维光子晶体的THz波传输性质的研究做出了重要贡献[2 4]。他们实验研究了二维聚合物介质光子晶体柱、金属光子晶体柱、线缺陷和多种点缺陷光子晶体柱波导中THz波的传输性质。在垂直于二维光子晶体周期平面方向上对光没有限制,因此要求柱高度或孔高度远大于波长,在THz波段就要求柱高度达到几个毫米,现有加工手段十分困难。如图2.2所示,他们首次将THz光子晶体置于金属PPWG中传输,PPWG支持TEM模式,不仅不受板间隙宽度的限制,同时也是非色散的。他们在理论和实验上证明无间隙地将有限高光子晶体柱夹于PPWG间可等效于无限高二维光子晶体,解决了THz光子晶体的高度问题,使得THz光子晶体的高度可以减小到几十微米。PPWG的使用是THz光子晶体有别于可见与近红外光子晶体的重要特点,也成为解决其他THz平板波导器件高效耦合和传输问题的重要途径。

Grischkowsky等在介质柱表面镀大于100 nm厚的金属膜,就形成了THz金属光子晶体。由于高欧姆损耗,金属光子晶体在光波波段无法实际应用,但理论和实验证明金属光子晶体在THz波段的传输性能是非常优良的,并表现出完全不同于介质光子晶体的带隙特性,这也是THz光子晶体的一个重要特点。

图2.2 THz光子晶体、PPWG耦合波导系统及其时域、频域光谱[2]

Yee等在THz光子晶体平板耦合和传输方面也开展了重要的实验研究工作[5]。他们采用集成高阻硅透镜的方式将THz波耦合到光子晶体线缺陷波导中,并测量了光子晶体微腔的谐振谱线和Q值,如图2.3所示。Mittleman等在THz光子晶体平板的导模谐振效应和超棱镜效应方面开展了大量的理论和实验研究工作[6]。此外,可以将导模谐振效应由光子晶体平板推广至光子晶体柱阵列,并基于这种效应开展THz传感研究[7]

图2.3 

(a)THz光子晶体线缺陷;(b,c)光子晶体微腔及其谐振谱线[5]

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈