首页 理论教育 成本碗型曲线简介

成本碗型曲线简介

时间:2023-06-12 理论教育 版权反馈
【摘要】:在战争中,克劳塞维茨说有胜利的顶点;在管理学上有利润曲线和高德拉特所说的浴缸曲线;在经济学上有拉弗曲线和成本曲线;这些曲线都是碗型的,上升和下降沿可能不是对称的。关于成本曲线,肯定会存在一个成本的最低点。图5-24成本碗型曲线在固定成本C下,供给曲线为S1S1,与纵轴的交点为C。当成本曲线为碗型曲线C1C1时,供给曲线变为S2S2。可以设置成本函数为一个开口向上的抛物线C=a(Q-b)2来表示碗型曲线。

成本碗型曲线简介

战争中,克劳塞维茨说有胜利的顶点;在管理学上有利润曲线和高德拉特所说的浴缸曲线(如图5-23所示);在经济学上有拉弗曲线和成本曲线;这些曲线都是碗型的,上升和下降沿可能不是对称的。

图5-23 碗型曲线

克劳塞维茨在《战争论》中写道:“胜利者不是在每次战争中都能彻底打垮敌人的。胜利常常而且在大多数情况下都有一个顶点。这是大量经验所充分证明了的。于是就发生了如下的情况:大多数统帅宁愿在远离目标的地方停下来,而不愿离目标太近;而有些具有出色的勇敢和高度的进取精神的统帅往往又超过了目标,因而达不到目的。所以只有那些能用少量的手段创建大事业的人才能顺利地达到目的。”

关于成本曲线,肯定会存在一个成本的最低点。刚开始生产某种产品,肯定不能立刻达到成本的最低点,随着管理进步、技能熟练和规模效应等原因,成本在下降,最终达到成本的最低点。此时再增加人力、资本或材料等的投入,边际的利益在下降,成本会增加(如图5-24所示)。

(www.xing528.com)

图5-24 成本碗型曲线

在固定成本C下,供给曲线为S1S1,与纵轴的交点为C。当成本曲线为碗型曲线C1C1时,供给曲线变为S2S2。可以设置成本函数为一个开口向上的抛物线C=a(Q-b)2来表示碗型曲线。供给函数为QS=KS(P-C),由于纵轴为价格,横轴为供给量,为了绘图方便,需要将供给函数进行变换,得到P=QS/KS+C,带入碗型成本曲线,得到新的供给函数为P=QS/KS+a(Q-b)2,绘图得到供给函数图形为S2S2(如图5-25所示)。

成本函数有许多形状,碗型成本曲线只是其中的典型形状之一,对于不同的成本曲线,只要根据供给函数QS=KS(P-C),将成本C替换成对应的成本函数即可。

图5-25 成本碗型曲线对供给曲线的影响

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈