首页 理论教育 科技进步助推人工智能起飞

科技进步助推人工智能起飞

时间:2023-06-10 理论教育 版权反馈
【摘要】:近期出现的三大科技进步为人工智能的起飞提供了平台。倘若没有这些要素,人工智能是否能如此迅猛地发展将是一件值得商榷的事。基于计算机的神经网络包含被称为神经元的计算单元,它们是人工连接的,以便人工智能系统能够推理8。这些变化的共同影响导致基于人工智能的系统取得快速和令人印象深刻的进步。

科技进步助推人工智能起飞

近期出现的三大科技进步为人工智能的起飞提供了平台。第一,计算能力终于提升到可执行大量计算所需的水平。第二,由于云计算,个人和组织可获得大量计算能力和存储容量而无须进行大规模的硬件资本投资。第三,数字数据的爆炸性增长使得建立更大的数据集,以训练基于人工智能的系统成为可能。倘若没有这些要素,人工智能是否能如此迅猛地发展将是一件值得商榷的事。

不过,人工智能的发展还需要第四个基本要素,它对于帮助计算机和数据科学家让人工智能有效发挥作用至关重要,而它涉及了人工智能所需的另一个甚至更基本的技术能力,即认知,换句话说,就是计算机推理学习的能力。

几十年来,业界一直在激烈地争论什么是使计算机能够思考的最佳技术方法。方法之一是基于所谓的“专家系统”,这种方法在20世纪70年代后期和80年代风行一时,它的原理是收集大量事实并创建规则,使计算机可以将其应用于逻辑推理链来做出决定。正如一位技术专家所指出的,这种基于规则的方法无法扩展到足以匹配现实世界问题的复杂性。他说:“在复杂的领域中,规则的数量将变得极其巨大,而且因为新的事实由手工添加,跟踪例外情况和与其他规则交互并不可行。”5在许多方面,我们在生活中并不是根据规则来进行推理,而是基于经验来辨别模式6。反过来看,如果一个系统是基于如此详细的规则而建立的,那么或许只有律师才会喜欢它。

自20世纪80年代以来,另一种人工智能方法被证明更加优越。这种方法使用统计方法进行模式识别、预测和推理,实际上是通过从数据中学习的算法来构建系统。在过去的10年中,计算机和数据科学的飞跃导致了所谓深度学习或神经网络的广泛应用。我们的人类大脑包含由突触连接的神经元,使我们能够辨别周围世界的模式7。基于计算机的神经网络包含被称为神经元的计算单元,它们是人工连接的,以便人工智能系统能够推理8。从本质上讲,深度学习方法是使用多层人工神经元提供大量相关数据,以训练计算机识别某一种模式。它是一个计算和数据密集型的过程,这就是为什么其进展需要由前面提到的其他进展来支持。它还需要在训练多层神经网络所需的技术方面取得新的突破9,而这种突破在大约10年前开始出现10。(www.xing528.com)

这些变化的共同影响导致基于人工智能的系统取得快速和令人印象深刻的进步。2016年,微软研究院团队开发的视觉识别系统在一次挑战中达到可匹敌人类的能力,这次挑战是在一个被称为ImageNet的图库中识别大量物体。随后,他们以一个名为Switchboard的数据集,针对语音识别系统进行了同样的挑战,并达到94.1%的准确率11。换句话说,计算机在感知周遭世界方面开始做得像人类一样出色。同样的进步也发生在语言翻译中,这在一定程度上要求计算机理解不同单词的含义,包括细微差别和俚语。

很快,公众开始感到不安,大量文章出现并提出一个问题:一台基于人工智能的计算机是否能以超人的速度完全独立思考和推理,从而导致机器接管世界。这就是技术专家所说的超智能,或者一些人口中的所谓“奇点”12。正如戴夫·海纳在2016年谈到这个问题时所说,这个问题占用了人们太多的时间和注意力,可以说分散了人们对更重要、更紧迫问题的注意力。他说:“这当然太过于科幻,并且它模糊了人工智能已经开始制造的更紧迫的问题。”

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈