【摘要】:结论7零售商受益于以旧换新消费比例的增大。结论8随着以旧换新消费比例的增大,回收商的利润从无到有,并逐渐增大至极值后有所下降。图2-4消费者结构对企业利润的影响证明令,即[(1-c)+3v]β2-2[2(1-c)+7v]β+[4(1-c)+8v]=0。由于[(1-c)+4v]2=(1-c)2+8(1-c)v+16v2,只需比较(1-c)2和9v2的大小关系即可。由推论1可知2v>1-c,而3v=2v,因此,3v>,此根在有效范围内。经简单分析可知,该极值为极大值。
结论7 零售商受益于以旧换新消费比例的增大。
证明 由于而(4-β)v>(4-2β)v=(2-β)2v>(2-β)(1-c)(由推论1可知,2v>1-c)。因此,,即零售商的利润随着以旧换新消费比例的增大而逐渐增大(可以从图2-4中看出零售商利润随着以旧换新比例增加而发生的变化)。因此,零售商受益于以旧换新消费比例的增大。
结论8 随着以旧换新消费比例的增大,回收商的利润从无到有,并逐渐增大至极值后有所下降。
图2-4 消费者结构对企业利润的影响(c=0.5和v=0.3)
证明
令,即[(1-c)+3v]β2-2[2(1-c)+7v]β+[4(1-c)+8v]=0。经分析,该等式有两个实根:(www.xing528.com)
该根不在有效的范围内(β∈[0,1]),那么另一个根在有效的范围内吗?还是回收商的利润随着以旧换新比例的增加而单调递增或递减?由于[2(1-c)+7v]2=4(1-c)2+28(1-c)v+49 v2>8(1-c)v+25 v2,因此,
接下来还需要判定该根是否小于1。
当且仅当时,此根在有效范围内。
由于[(1-c)+4v]2=(1-c)2+8(1-c)v+16v2,只需比较(1-c)2和9v2的大小关系即可。由推论1可知2v>1-c,而3v=2v,因此,3v>,此根在有效范围内。
综上所述,在时,回收商的利润达到一个极值。经简单分析(β=0时,)可知,该极值为极大值。因此,随着以旧换新消费比例的增大,回收商的利润从无到有,并逐渐增大至极值后有所下降(从图2-4中看出,回收商利润随着以旧换新比例增加而发生的变化)。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。