由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。通常产生异方差有以下几个原因。
1.模型中省略了某些重要的解释变量
如果模型中只包含所要研究的几个主要因素,其他被省略的因素对被解释变量的影响都归入了随机误差项,则可能使随机误差项产生异方差性。
例如,用截面数据研究消费函数,根据绝对收入消费原理,设消费函数为
Yt=β0+β1Xt+μt
其中:Yt为家庭消费支出,Xt为家庭可支配收入。在该模型中,物价水平Pt没有包括在解释变量中,但它对消费支出是有影响的,该影响因素却被放在随机误差项中。如果物价水平是影响消费的重要部分,则很可能使随机误差的方差变动呈现异方差性。另一方面如果用Xt/Pt只表示不同家庭收入组的数据来研究消费函数,则不同收入组在消费支出上的差异是不同的。高收入组的消费支出差异应该很大,而低收入组的消费支出差异就很小。不同收入的家庭其消费支出有不同的差异变化。
再例如,用截面数据研究某一时点上不同地区的某类企业的生产函数,其模型为
u为随机误差项,它包含了除资本K和劳动力L以外的其他因素对产出Y的影响,比如不同企业在设计上、生产工艺上的区别,技术熟练程度或管理上的差别以及其他因素,这些因素在小企业之间差别不大,而在大企业之间则相差很远,随机误差项随L、K增大而增大。由于不同的地区这些因素不同造成了对产出的影响出现差异,使得模型中的u具有异方差性,并且这种异方差性的表现是随资本和劳动力的增加而有规律变化的。
2.模型设定误差(www.xing528.com)
模型的设定主要包括变量的选择和模型数学形式的确定。在一般情况下,解释变量与被解释变量之间的关系是比较复杂的非线性关系。在构造模型时,为了简化模型,用线性模型代替了非线性关系,或者用简单的非线性模型代替了复杂的非线性关系,造成了模型关系不准确的误差。如将指数曲线模型误设成了线性模型,则误差有增大的趋势。
3.测量误差的变化
样本数据的观测误差有可能随研究范围的扩大而增加,或随时间的推移逐步积累,也可能随着观测技术的提高而逐步减小。例如生产函数模型,由于生产要素投入的增加与生产规模相联系,在其他条件不变的情况下,测量误差可能会随生产规模的扩大而增加,随机误差项的方差会随资本和劳动力投入的增加而变化。这样,一方面,样本数据的测量误差常随时间的推移而逐步积累,从而会引起随机误差项的方差增加。另一方面,随着时间的推移,抽样技术和其他收集资料方法的改进,也使得样本的测量误差逐步减少,从而引起随机误差的方差减小。因此,在时间序列资料中,由于在不同时期测量误差的大小不同,从而随机项就不具有同方差性。
4.截面数据中总体各单位的差异
通常认为,截面数据较时间序列数据更容易产生异方差。例如,运用截面数据研究消费和收入之间的关系时,如果采取不同家庭收入组的数据,低收入组的家庭用于购买生活必需品的比例相对较大,消费的分散程度不大,组内各家庭消费的差异也较小。高收入组的家庭有更多自由支配的收入,家庭消费有更广泛的选择范围,消费的分散程度较大,组内各家庭消费的差异也较大。这种不同收入组家庭的消费偏离均值程度的差异,最终反映为随机误差项偏离其均值的程度有变化,而出现异方差。异方差性在截面数据中比在时间序列数据中可能更常出现,这是因为同一时点不同对象的差异,一般来说会大于同一对象不同时间的差异。不过,在时间序列数据发生较大变化的情况下,也可能出现比截面数据更严重的异方差。
5.随机因素的影响
经济变量本身受很多随机因素影响(政策变动、自然灾害、金融危机、人的思维等),不具有确定性和重复性,同时,社会经济问题涉及人的思维和行为,也涉及各阶层的物质利益,人的行为具有很多不确定因素。因此,经济分析中经常会遇到异方差性的问题。而且经验表明,利用横截面数据建立模型时,由于在不同样本点上(解释变量之外)其他因素影响的差异较大,所以比时间序列资料更容易产生异方差性。无论是时间序列数据还是截面数据,都会产生异方差,但截面数据更容易产生。递增型异方差的来源主要是因为随着解释变量值的增大,被解释变量取值的差异性增大。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。