依图科技的创始人朱珑认为算法在亿级、十亿级比对的领先会快速放大到5%,20%。“这是一般的算法性能曲线的规律,除了可识别规模上的重大差异,还体现在难(hard)的数据上的识别率差异。”算法提高,扩大可识别规模,就会解锁更多商业应用场景。百万、千万识别规模对应的是身份认证场景,远程认证、手机解锁都属于此类。“技术无差异”的论调在这个场景下倒是可以成立。但安防刑侦破案对亿级和十亿比对有刚性需求,在这些场景下,不是多识别出几个罪犯的问题,而是找出来概率差别十倍以上的,几乎就是行与不行的问题。
在最新的安防案例中,万路甚至十万路摄像头视频的人脸搜索、归档对算法有极高要求,假定每路人流为万,要在万路视频中,搜索性能相当于要求算法百亿、千亿规模上的可识别率。这比其他场景的性能要求再提高千倍。以不同算法为基础的产品端体验差异就被同比例放大。另外,全球人种的识别,是反恐、出入境业务对识别的覆盖面要求是很高的。总结来说,99%识别率的算法和99.99%的算法,区别在于可解锁的应用场景。这就是为什么依图一直在算法上投入那么多的人力物力。(www.xing528.com)
AI技术如何创新发展,如何变革商业,没有历史可以借鉴,也没有权威能准确判断。AI不仅仅是一个技术,AI突破还能突破所有技术包括人机交互、搜索、机器人、芯片计算、医学、制药等科学领域的几乎所有学科。AI发展带来的多维度技术和各场景深度结合、叠加会带来更有冲击力的体验。从多技术维度来说,从视觉,到听觉、语义理解、运动控制会在之后几年都会快速突破;和芯片结合,端智能渗透到与用户的最后30厘米的交互体验,从Internet Of Things向Internet Of Intelligence跨越,智能将会无处不在。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。