三、人工固氮
人工固氮主要是针对生物固氮而言,通过化学方法,制备出类似生物“固氮菌”的物质,使空气中的氮气在常温常压下与水及二氧化碳等反应,转化为氨态氮或铵态氮,进而实现人工合成大量的蛋白质等,最终实现工厂化生产蛋白质食品。
工业上通常用H2和N2在催化剂、高温、高压下合成氨,位于Thessaloniki的阿里斯多德大学的两位希腊化学家George Marnellos和Michael Stoukides发明了一种合成氨的新方法(Science,Oct.1998)。在常压下,令氢与用氦稀释的氮分别通入一加热到570℃的以锶铈钇钙钛矿多孔陶瓷(SCY)为固体电解质的电解池中,用覆盖在固体电解质内外表面的多孔钯多晶薄膜的催化,转化为氨,转化率达到78%;对比:他们用在线气相色谱检测进出电解池的气体,用HCl吸收氨引起的pH变化估算氨的产率,证实提高氮的分压对提高转化率无效;升高电流和温度虽提高质子在SCY中的传递速度却因SCY导电率受温度限制,升温反而加速氨的分解。
21世纪初以来全球农作物单位面积产量不断增长,在一定程度上依赖于氮素化肥的施用量不断增加。农作物依赖于施用氮素化肥所获得的增产实际上是以消耗能源和污染环境为代价所取得的。在大气中氮气含量接近80%,但这种氮气并不能直接为高等植物吸收利用。人类自从发现豆科植物与根瘤菌共生结瘤固氮现象以来对生物固氮研究已有112年之久,我国对生物的共生固氮现象也进行了长达62年的探索性研究。然而,关于生物固氮,特别是非豆科农作物的生物固氮,还有许多问题有待于进一步研究。目前,生物固氮研究已经被列为“国际生物学计划”中的重点研究内容,各国政府都将其视为重点科技攻关项目。通过适当方式将生物固氮机制引入到非豆科农作物中,进而建立起非豆科农作物固氮新体系,这是农业科学研究中一项富有挑战性的研究课题。这不仅引起了农业科学家的极大兴趣,也受到了全社会各阶层有识之士的广泛关注。
1.在豆科植物中生物固氮研究的动态
现在已经知道,生物固氮作用只限于原核类微生物(细菌和放线菌);所有不同种类的固氮微生物都由共同的固氮基因(nif)控制着固氮特性遗传,nif基因和固氮酶只存在于固氮菌体中;具有共生固氮特性的高等植物仅仅提供宿主条件,以便固氮菌的固氮效能得到充分表达;通过遗传操作实现了nif基因在不同种细菌之间相互转移,由此对nif基因的位置、数目、结构和功能等方面有了更深入的了解。
通过对自身固氮生物的nif基因进行分子生物学研究知道,在克氏肺炎杆菌中存在着17~18个nif基因,这些基因都位于其染色体上,其中有固氮酶结构基因nifKDH、调节基因nifAL和固氮酶合成后的加工基因nifB以及其他与电子传递相关的基因。在同一固氮生物的个体中所有nif基因均连锁在一起,其中不存在非nif基因的插入成分;在nif基因群中存在着7个操纵子,其中有6个操纵子具有向同一方向进行转录的功能(Puhler,1984);在nifF基因和nifH基因之间还存在着一段反向阅读框架。
已经证实,在根瘤菌中的nif基因和结瘤基因都被定位在质粒上。根瘤菌的质粒有多种,其分子质量为90×108或140×106或大于300×106Da。在根瘤菌的质粒中除了固氮基因之外还存在着结瘤基因,使宿主的根毛变形弯曲的基因、根瘤起始基因和产生色素的基因等。
在宿主植物中也有许多基因参与共生固氮作用,其中豆血红蛋白基因起着非常重要的作用。在豆科植物的根瘤内豆血红蛋白具有运氧功能,由此降低类菌体周围的氧分压,以利于在嫌氧条件下进行固氮作用。如果在根瘤内不存在豆血红蛋白则为无效根瘤,这种根瘤不具有固氮功能。豆血红蛋白基因是隐性基因,只有当根瘤菌侵入宿主的根毛之后该基因才有可能表达。除此之外,在根瘤发育过程中还需要18~20种基因的产物(多肽)协同作用,这些基因统称为结瘤素基因,其多肽产物统称为结瘤素。
豆科植物固氮研究的发展趋势主要在两个方面,即应用研究和基础理论研究。在应用研究方面,试图培育出具有更强的固氮能力和吸氢酶基因的根瘤菌已经成为该领域的重要研究方向之一。霍尔斯特(Holster)等(1970)报道,根瘤菌可以与豆科植物在体外建立起共生关系,根瘤菌从细胞间隙进入大豆细胞内,但这种体外共生体系的固氮酶活性比较低,只相当于正常大豆根瘤的1%。通过研究工程化根瘤菌,筛选出新的固氮菌和根瘤菌接种剂,使豆科植物的结瘤数增加,固氮能力增强。已知固氮作用要消耗植物制造的光合产物的15%~30%,在固氮过程中的放氢反应实际上是一种能量浪费。现在已经证实,在少数根瘤菌中存在着吸氢酶基因,其产物能回收在固氮作用过程中所放出的氢,由此形成ATP,节省能量,提高固氢效率。目前对这种吸氢酶基因已经进行了定位和克隆,如果能将这种基因转化到不具有吸氢酶基因的大多数根瘤菌中,则由此培育的新根瘤菌将具有更大的固氮活性和固氮效率。在基础理论研究方面,需要探明在根瘤菌与豆科植物共生固氮过程中双方有多少基因参与结瘤固氮作用,以便为建立人工模拟固氮体系提供理论依据;阐明根瘤菌对豆科植物专一性识别的机制,以便利用人工方法更精确地打破识别的专一性,扩大宿主范围;研究根瘤菌侵染宿主根毛之后,诱导宿主根内豆血红蛋白基因和结瘤素基因表达的机理,从而控制固氮根瘤菌的有效性。
2.在非豆科植物中生物固氮的研究进展
在非豆科植物生物固氮的研究中主要包括两个研究方向。其一是采用适当的技术路线和切实可行的研究方法将根瘤菌导入非豆科作物中,在非豆科作物与根瘤菌之间形成共生关系,由此形成根瘤,扩大根瘤菌的宿主范围和提高其固氮效应。其二是采用先进的生物技术进一步对固氮放线菌Frankia的生物学特性及其应用价值进行探讨,以便挖掘Frankia菌在非豆科植物上的固氮潜力,由此形成生物固氮的新技术体系。
(1)在非豆科植物与根瘤菌之间形成共生关系的探讨
德国植物学家拜尔(1888)首次在半寄生性草本植物草山萝和大猪鼻花(属于非豆科植物)的根部发现了根瘤,但这一奇特的现象并没有引起人们的关注。特里尼克(Trinick)(1973)首次证实,豇豆属植物根系中所存在的根瘤菌能与榆科植物共生结瘤固氮。帕甘(Pagan)等(1975)在试验中发现,在没有宿主植物细胞的情况下,豇豆根瘤菌能在人工培养基上独立生活和自行固氮,否定了长期以来一直认为根瘤脱离宿主植物就不能固氮的传统观念。如今已经知道,在残留的根部形成根瘤的非豆科植物的数量并不少,仅在俄罗斯的西伯利亚就有75个物种,分属于21个科,其中在进化史中最为年轻的菊科植物中,其根系形成根瘤是一种最常见的现象。在新几内亚,榆科的狗儿屎属植物Parasporiarogosa通常生长在茶叶树的行间,在其根部很容易发现与热带豆科植物相类似的结瘤现象。
在自然条件下植物体与微生物相结合后形成固氮体系的现象在20世纪70年代就已经引起了人们的关注。除了根瘤菌与豆科植物之间的共生固氮关系之外,还存在着兰绿藻与植物固氮;微生物与植物叶面结合固氮;土壤微生物与植物结合固氮。除此之外,对固氮稻的研究有了新的进展。在稻的根际嫌气性细菌和好气性细菌呈镶嵌状态,有着保护氧的作用,故稻的根际是最适于固氮菌存在的地方;现代栽培稻的固氮能力及各品种在固氮能力上所存在的差异是由其遗传性所支配,旱稻几乎没有固氮能力;在稻根际与固氮菌之间存在着松弛的共生关系。有关专家预测,通过寻找稻根际固氮基因和支配其固氮能力的基因,有可能利用具有更强固氮能力的基因或基因组,通过基因工程培育出固氮稻新品系。在80年代中期,将含有固氮调控基因nifA的质粒pMC78A引进到水稻根际固氮菌——催娩克氏菌(klebsiellaoxytoca NG18)中之后,筛选到耐氨菌株。将耐氨固氮菌接种到水稻根系之后,其根际固氮活性提高3~5倍,植株含氮总量提高20%~30%,植株干重增加10%~20%(日本国立遗传学研究所,1985—1986)。(www.xing528.com)
自从聂延富(1983)利用植物生长素2,4—D处理根系,诱导根瘤菌侵入小麦根部形成根瘤的试验获得成功之后,我国在利用根瘤菌侵染非豆科植物形成根瘤方面开展了多方面的探索性研究,试图通过人工方法促使非豆科植物与根瘤菌形成共生关系,以便扩大生物固氮的范围。目前关于利用2,4—D诱导非豆科作物根系与固氮菌共生结瘤,国内外已在小麦、油菜、水稻和胡萝卜等作物上取得了成功。阿勒马拉(Al-Mallah)等(1989)利用纤维素酶yc、果胶酶Y23和甘露醇的细胞壁降解酶混合物处理幼苗根系,在有聚乙二醇存在的条件下将根瘤菌接种在水稻根系上,结果,在水稻根系上结出了根瘤。自80年代以来,我国相继对水稻、玉米、小麦和高粱等非豆科作物的联合结瘤固氮进行了深入的研究,成功地分离出一批具有高效固氮功能的联合固氮菌株,如粪产碱菌、稻黄杆菌和固氮螺菌等。我国学者提出的“共生固氮体系中最佳结瘤固氮控制模型的研究”的探索性项目被列入国家的“攀登计划”。然而,总的来看,作为基础性研究,国内外在非豆科作物固氮方面虽不断取得新进展,但离农业生产的实际应用还有相当长的一段距离。
(2)引导固氮生物侵入非豆科植物的方法
豆科植物的根瘤是一个非常复杂的共生体系,根瘤菌与豆科植物根系的相互结合依赖于特异的遗传机制。为了打破根瘤菌与豆科植物根系共生结瘤固氮的特异性,将豆科植物的共生固氮特性扩大到不具有共生固氮特性的非豆科植物中,研究者们从许多途径进行了有益的尝试,获得了一些有效方法,主要有如下6种常用的方法。
第一,利用改造后的豆科植物根瘤菌直接侵染非豆科植物。利用基因工程技术构建携带有特定结瘤基因的质粒,然后将其转入到适当的根瘤菌中,由此获得发生质粒重组的受体菌,再利用受体菌直接侵染非豆科植物。
第二,利用植物裸露的原生质体吸收固氮微生物,以此建立起新的固氮体系。已经证实,裸露的原生质体比较容易吸收外源遗传物质,不但豆科植物的原生质体具有吸收固氮微生物的功能,而且非豆科植物的原生质体也具有吸收固氮微生物的功能。曾经利用玉米的原生质体吸收棕色固氮菌后,玉米原生质体表现出固氮活性,这样的原生质体可以培养成愈伤组织,由此分化出的胚在完全缺氮源的培养基上能够进一步生长发育。
第三,通过植物愈伤组织与固氮微生物进行联合培养,建立新的共生固氮体系。将豆科根瘤菌分别放入半支莲、胡萝卜、矮牵牛和囊龙面花等非豆科植物的愈伤组织中,经过联合培养后根瘤菌与愈伤组织形成新的共生关系,表现出固氮活性。
第四,利用酶处理打破根瘤菌侵染根毛的障碍。已知根瘤菌对宿主根毛区的侵染表现出很强的专一性,即特定的根瘤菌侵染特定的宿主。在玉米、水稻和小麦等作物上的试验结果表明,利用纤维素酶和果胶酶处理作物的根部后,其根毛细胞的细胞壁会发生局部破坏,这有助于根瘤菌的侵染和共生结瘤。
第五,利用植物激素打破根瘤菌侵染根毛的障碍。通过对非豆科植物的根系进行2,4—D处理后可以诱导豆科根瘤菌侵入其根皮层细胞内,随后可以形成根瘤菌。然而,更进一步的研究结果表明,在2,4—D诱导下在非豆科植物根系内所形成的根瘤与豆科植物的有效根瘤在结构上和功能上的相似性。
第六,通过豆科植物与非豆科植物的原生质体融合后培育出新的固氮植物。在70年代中期将窄叶羽扇豆类菌体的原生质体与烟草叶肉原生质体融合成功后,获得了融合体。然而,目前在这方面的研究还有一些技术问题亟待解决。
(3)在非豆科植物与Frankia菌之间形成共生关系的探讨
佩克洛(Peklo)(1910)首次提出从非豆科树木的根瘤中分离内生菌的设想,但他一直没有达到预期目的。在20世纪60年代,通过超显微观察后证实,在非豆科树木根瘤内所存在的固氮菌是原核生物,其丝状体有分枝。贝金(Becking)(1970)将非豆科树木根瘤内所存在的内生菌归属于原核生物界,厚壁菌门,放线菌纲,放线菌目,弗兰克氏菌科,弗兰克氏菌属。直到70年代末,卡拉哈姆(Callaham)等(1978)在香蕨木植物的根系中找到了共生根瘤,并从共生根瘤中首次分离出内生放线菌。已经证实,在木麻黄、桤木、胡颓子、沙棘、杨梅、马桑、悬钩子、仙女木和赤杨等非豆科根瘤中所存在的内生固氮菌属于弗兰克氏(Frankia)菌属的微生物。近年的研究主要集中在对该菌的特征特性的研究。由此发现,Frankia菌宿主范围比较宽,在非豆科树木的一些科、属、种间不仅存在交叉感染现象,而且由同一种树木的根瘤内可以获得在特征特性上存在着明显不同的Frankia菌株。Frankia菌是生长缓慢型微好气性放线菌,能形成特征性孢子囊,在孢子囊内含有通过纵横分裂所形成的不游动孢囊孢子。
在被子植物中能与Ftsnkia菌共生结瘤固氮的非豆科植物皆为乔木或灌木等木本植物,它们不仅具有强大的固氮能力,而且,通常还具有耐干旱(如沙棘)、耐盐碱(如木麻黄)、耐酸性(如杨梅)和耐水湿(如赤杨)等特性。据阿克曼(Akkermans)等人(1984)统计,已经发现21属200种非豆科植物能与Frankia菌共生结瘤固氮。随后,黄家彬等(1985)在我国又发现20种新记载树种具有与Frankia菌共生结瘤固氮的特性。最近,李志真等(1998)在福建省林区内发现5种能与Frankia菌共生结瘤固氮的非豆科树种。因此,目前已发现8科25属225种非豆科植物能与Frankia菌共生结瘤固氮。
我国于70年代末期开始研究放线菌结瘤植物,在资源调查、内生菌分离和Frankia菌的生物学特征特性等方面做了大量的研究工作。目前我国已经成为国际上拥有Frankia菌株资源最多的基地之一。除此之外,在利用细胞融合技术改进Frankia菌的特征特性方面已有新的苗头,利用链霉菌和Frankia菌融合后已经成功地构建成新型的共生固氮放线菌,它具有双亲本性能,即生长快、结瘤固氮活性强。
Frankia菌具有跨越科、属植物进行侵染结瘤固氮的特性,因而被认为是研究扩大寄主范围、结瘤机制、固氮基因转移和构建新的固氮物种的理想材料。随着对Frankia菌的特征特性的不断认识,人们试图将此共生体系的固氮功能由木本植物转到禾本科作物上,以解决农田氮肥自给问题,减少农作物对氮素化肥的依赖。随着研究的不断深入,人类将进一步揭示Frankia菌共生固氮的奥秘,阐明其遗传机制。利用生物工程技术和方法构建高效的Frankia工程菌和构建新的固氮共生体系将成为今后生物固氮研究领域中的发展方向和追求目标。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。