有时我们可把我所说的一个理论的“应用场”很简单地等同于它的图形表示场,即图纸上的一块面积,我们在这张图纸上用图形表示理论:可认为这个图形表示场的每一点相应于一个相对原子陈述。因此理论相对于这个场的维,就等于相应于这理论的曲线集的维。我将用第36节中的两个陈述q和s来讨论这些关系(我们用维作比较适用于具有不同谓词的陈述)。假说q——所有行星轨道都是圆——是三维的:要证伪它,至少需要这场的四个单称陈述,相应于它的图形表示的四个点。假说s:所有行星轨道都是椭圆,是五维的,因为要证伪它,至少需要六个单称陈述,相应于图形上的六个点。我们在第36节里看到:
q比s更易证伪:因为所有圆都是椭圆,所以有可能把比较建基于子类关系之上。但是使用维使我们能比较以前不能比较的理论。例如,我们现在可以比较一个圆假说和一个抛物线假说(它是四维的)。“圆”、“椭圆”,“抛物线”,每一个词表示一个曲线类或集;这些集中的每一个集有d个维,假如挑选出这集中的一条特定曲线,或者给以特征描述,d点是必要和充分的话。在代数表示式里,这曲线集的维依赖于参量的数目,这些参量的值我们可以自由选择。所以我们可以说,用以表示一个理论的一个曲线集的、可以自由测定的参量的数目,是那个理论的可证伪(或可检验)度的特性数。
与我的例子中的陈述q和s相联系,我愿意对kepler发现他的定律作一些方法论的评论。(www.xing528.com)
我并不想提出这样的看法:完美的信念——指导kepler作出发现的助发现原理——是有意或无意地由对可证伪度的方法论考虑所引起的。但是,我的确认为,kepler取得成功部分地由于这一事实:作为他出发点的圆假说,相对地说是易于证伪的。假如kepler从由于其逻辑形式不是如圆假说那样易于检验的假说出发,考虑到计算的困难,这种计算的基础是“在空中”——可以说,漂浮在天空中,以不知道的方式在运动,他很可能得不到任何结果。kepler通过证伪他的圆假说达到的毫不含糊的否定结果,事实上是他的第一个真正的成功。他的方法也被证明完全正确,因而他可以继续进行下去;特别是因为,即使这第一步尝试也已经产生一些近似值。
无疑,kepler定律可以用另外的方法找到。但是我想,这是引致成功的方法,这一点不仅是偶然的。这相当于消去法,仅当理论足够易于证伪——足够精确,能够和观察经验相冲突时,这种方法才是可应用的。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。