首页 百科知识 提高科学发现的可检验度

提高科学发现的可检验度

时间:2023-12-04 百科知识 版权反馈
【摘要】:直到现在为止,我们仅在理论可以借助子类关系来作比较的范围内来比较它们的可检验度。这些陈述类,与所有可从这些陈述形成的合取一起,可以称之为一个“场”。但是通过借助场比较它们的维,我们能估计基础陈述的复合度。但是如果在一种特殊情况下,这两种方法都适用,那么可以想象会发生这种的事:两个理论有相同的维,但是,假如用建基于子类关系的方法来评价,可能有不同的可证伪度。

提高科学发现的可检验度

直到现在为止,我们仅在理论可以借助子类关系来作比较的范围内来比较它们的可检验度。在某些情况下,这个方法在指导我们选择理论方面很成功。因此现在我们可以说,在第20节中举例说到的pauli的不相容原理的确证明是一个令人满意的辅助假说。因为它极大地增加了旧的量子论的精确度,因而增加了可检验度(如新量子论的相应的陈述断言:电子具有反对称状态,而不带电粒子和某些带大量电荷的粒子具有对称状态)。

然而,对于很多目的来说,用于类关系的方法来进行比较是不够的。因此,例如frank指出,具有高水平的普遍性的陈述——例如planck公式里的能量守恒原理——易于变成重言的,失去它们的经验内容,除非初始条件可以“……用少数测量,……即依靠系统状态特有的很少几个量值”来确定。关于必须确定和代入公式的参量的数目的问题是不能借助子类关系的帮助来阐明的,尽管它是显然与可检验性和可证伪性以及它们的程度密切联系着的。确定初始条件需要的量值越少,足以使理论被证伪的基础陈述就越不是复合的;因为起证伪作用的基础陈述,是由初始条件和推导出的预见的否定二者的合取组成的(参看第28节)。因此,通过弄清一个基础陈述必须有的最小复合度(如果它能够与理论矛盾的话),就有可能比较理论的可检验度;只要我们能找到一种方法来比较基础陈述以弄清它们是否更(或不那么)复合的,即是否是大量(或小量)比较简单的一种基础陈述的复合物。所有复合度没有达到必要的最低限度的基础陈述,不管它们内容如何,只是由于它们的低复合度,就都是为理论所允许的。

但是,任何这样的纲领都面临着困难。因为一般地说,单靠检查,是不容易说出一个陈述是否是复合的,即是否等于更简单的陈述的合取。在所有的陈述里,都出现普遍名称,通过分析它们,人们往往能把陈述分解为合取的组分(例如,陈述:“在k地有一玻璃杯水”也许可以被分析和分解成两个陈述:“在k地有一玻璃杯盛着一种液体”和“在k地有水”)。用这种方法来分解陈述,没有希望找到任何自然的终点,特别是因为,我们为了使进一步分解成为可能,总能引进新的已定义的普遍名称。

为了使得所有基础陈述的复合度成为可比的,可以建议:我们必须选择一定的陈述类作为基本的或原子的陈述,然后通过合取和其他的逻辑运算就能够从这些基本或原子陈述中得到所有其他陈述。如果成功,我们就应用这种方法来定义复合的“绝对零度”,然后可以把任何陈述的复合表示为可以说是绝对复合——度。但是由于上面已经说过的理由,这样一种程序必须被认为是非常不适当的;因为它会给科学语言的自由使用施加苛刻的限制。

然而,比较基础陈述的复合度,因而也比较其他陈述的复合度,仍然是可能的。可以这样做:任意选择一个相对的原子陈述类,我们把它作为进行比较的基础。这样一种相对原子陈述类可以用生成的图式或母式来定义(例如,“在……地方为了……有一个量器,它的指针指在刻度……和……之间”)。然后,我们可以把通过代入确定值,从这种母式(或者陈述函项)中得到的所有陈述类定义为相对原子的,因而定义为等复合的。这些陈述类,与所有可从这些陈述形成的合取一起,可以称之为一个“场”。一个场的n个不同的相对原子陈述的合取,可以称之为“这场的n组复合”,并且我们可以说,它的复合度等于数n

如果对一个理论t,存在这样一个单称(但是不一定是基础)陈述场:对某个数目d,理论t不能为这场的任何d组复合所证伪,虽然它能为某些d1组复合所证伪,那么我们称d为理论对于那个场的特性数。因此,这场的复合度低于d或等于d的所有陈述是同这理论相容的,是为这理论所允许的,不管这些陈述的内容是什么。(www.xing528.com)

现在就有可能把对理论的可检验度的比较建立在这个特性数d的基础之上。但是为了避免在使用不同的场时可能造成的不一贯,有必要使用一个比场这一概念更窄的概念,就是应用场的概念,如果已知理论t,我们说一个场是这理论t的一个应用场,假如对于这个场,存在理论t的一个特征性数字d,而且假如它满足其他一些条件。

一个理论t对于一个应用场的特性数d,我称之为t对于这个应用场的维。“维”这个词本身就说明了问题,因为我们可以把场的所有可能的n组复合看作有空间结构的(在无限维的构型空间中)。例如,若d3,则那些可允许的陈述(因为它们的复合度太低)形成这个构型的一个三维的子空间。从d3过渡到变为d2,相应于从立体过渡到为平面。维数d越小,容许的陈述类(这些陈述由于它们的复合度低,不管内容如何,不能与这理论矛盾)受到的限制就越严格,这理论的可证伪度就越高。

应用场的概念不限于基础陈述,但各种单称陈述都被容许作为属于一个应用场的陈述。但是通过借助场比较它们的维,我们能估计基础陈述的复合度(我们假定,与高度复合的单称陈述相应的是高度复合的基础陈述)。因此可以假定,与较高维的理论相应的是一个较高维的基础陈述类,这个类的所有陈述为这理论所容许,不管它们断言的是什么。

这回答了两种比较可检验度的方法如何联系的问题——一种方法通过理论的维,另一种方法通过子类关系。有这样一些情况:这两种方法都不适用,或者只有其中一种方法适用。在这种情况下,在这两种方法之间当然没有发生冲突的余地。但是如果在一种特殊情况下,这两种方法都适用,那么可以想象会发生这种的事:两个理论有相同的维,但是,假如用建基于子类关系的方法来评价,可能有不同的可证伪度。在这种情况下,从后一种方法得出的判断应该被接受,因为这一种方法证明是比较灵敏的方法。在这两种方法都适用的所有其他情况下,它们一定会导致相同的结果;因为,借助维理论的一条简单定理可以表明:一个类的维一定大于或等于它的子类的维。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈