如果陈述p,由于具有更高水平的普遍性或精确性,比陈述q更易于证伪,那么,为p所允许的基础陈述类是为q所允许的基础陈述类的一个真子类。适用于被允许的陈述类之间的子类关系,是适用于被禁止的陈述(潜在证伪者)类之间的子类关系的对立物:这两个关系可以说是相反的(也许可以说是互补的)。为一个陈述所允许的基础陈述类,可以称作它的“域”。一个陈述允许实在有的“域”,可以说是它允许实在“自由活动”的范围(或者自由度)。域和经验内容(参看第35节)是相反(或互补)的概念。因此,两个陈述的域的相互关系和它们的逻辑概率的相互关系一样(参看第34、72节)。
我引进域概念,因为它帮助我们处理和测量的精确度相联系的某些问题。假定两个理论的推断在所有的应用领域里区别是如此之小,以至在计算可观察事件之间的细微差别,由于在我们的测量中可达到的精确度不够高而不能检测到。因此,不首先改进我们的测量技术,就不可能用实验在这两个理论中作出判定。这表明,现行的测量技术决定了一定的域——一个范围,在这个范围内观察其间的差别为理论所允许。
因此,理论应该有可达到的最高可检验度(因此只允许最窄的域),这一规则衍推这样的要求:测量的精确度应尽可能提高。
人们经常说,所有测量都在于确定点的重合。但是任何这种确定只能在某些限度内才是正确的。在严格的意义上,不存在点的重合。两个物理“点”——比如,在量杆上的一个标记,在被测量物体上的另一个标记——它们至多能做到靠得很近;但不能重合,即不能合并成一点。不管在其他场合这个说法是如何的平凡,它对测量的精确性来说是重要的。因为它使我们想到,测量应该用下列术语来描述。我们发现,被测量的物体的点落在量杆的两个级别或标记之间,或者比方说,我们的测量仪器的指针落在刻度的两级之间。然后我们可以或者把这些级别或标记看作我们误差的两个最佳界限,或者去估计(比方说)指针在刻度间隔内的位置,因而得到一个比较准确的结果。人们可以这样描述这后一情况:我们使指针落在两个想象中的分级标记之间。因此,一个间隔、一个域总是存留着。物理学家的习惯是每一次测量都要估计这个间隔。(因此,例如他们效法milliken用静电单位测量电子的基本电荷,得出e=4.774·10-10,加上:不精确范围是±o.005·10-10。)但是这里发生一个问题。人们用两个标记——即间隔的两个边界——来代替刻度上的一个标记的目的究竟是什么,对于这两个边界的每一个,又一定会提出同样的问题:对于这间隔的边界,什么是准确性的界限呢?(www.xing528.com)
给出间隔的边界显然是无用的,除非这两个边界本身能以大大超过我们对原来的测量所希望达到的精确度确定下来;即在它们不精确的间隔内确定下来,这些间隔因此应该比它们为原来的测量值确定的间隔小几个数量级。换句话说,间隔的边界不是截然分明的,而实际上是很小的间隔,这个间隔的边界本身仍然是更小得多的间隔,等等。就这样我们达到了可以称为间隔的“不分明的边界”或“缩聚边界”的观念。
这些考虑并不以误差的数学理论和概率论为前提。这走的是另一条迂迴的路;通过分析测量间隔的观念,这些考虑提供了一个背景,如果没有这个背景,误差的统计理论就没有什么意义。如果我们测量一个量许多次,我们得到的数值以不同的密度分布在某一间隔——精确性的间隔依赖现行的测量技术。仅当我们知道我们追求什么——即这个间隙的缩聚边界——我们才能把误差理论应用到这些数值上,并确定间隔的边界。
现在我想所有这些多少说明了使用测量方法对于纯定性方法的优越性。即使在定性估计的情况下,例如对一个乐音的音高的估计,有时也可能为这种估计给出一个准确性的间隔,这是正确的;但是,没有测量,任何这样的间隔只能是很模糊的,因为在这种情况下,不能应用缩聚边界的概念。这个概念只能在我们可以谈到数量级的地方因而只能在规定了测量方法的地方才适用。我将在第68节中,联系到概率论,进一步运用精确性间隔的缩聚边界这一概念。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。