我们已经用子类关系对两个陈述的可证伪度的比较下了定义。因此,可证伪度的比较就具有子类关系的所有结构性质。可比较性问题可以用一个图(图1)来说明。在这个图中,左边画的是某些子类关系,右边画的是相应的可检验性关系。右边的阿拉伯数字对应于左边的罗马数字,某一罗马数字表示相应的阿拉伯数字所表示的那个陈述的潜在证伪者类。在这个图里表示可检验度的箭头,从具有更可检验的或更可证伪的陈述走向不那么可检验的陈述(因此它们相当准确地与可推导性箭头相当:参看第35节)。
从图中可以看出,各种子类序列可加以区别和追溯,例如,序列ⅰ-ⅱ-ⅳ或ⅰ-ⅲ-ⅴ;并且可以看出,引进新的中间类,可以使得这些序列更加“密集”。所有这些序列在这个特殊情况下都始于1和终于空类,因为空类被包含在每一个类里(在左面的图里,不可能画出空类,只是因为它是每一个类的子类,因此可以说必须出现在每一个地方)。如果我们选择类ⅰ作为所有可能的基础陈述类,那么ⅰ就变成矛盾陈述(c),而0(相当于空类)就可以表示重言陈述(t)。从ⅰ到空类,或者从(c)到(t),可能通过各种途径;从右边的图中可以看出,某些途径可以互相交叉。因此我们可以说,这种关系的结构是一种网络结构(由箭头或子类关系排列成的“序列的网络”)。在节结点(例如,陈述4和5)网络部分地联结起来。只有在普遍类和空类里,对应于矛盾陈述c和重言陈述t;关系才完全联结起来。
是否可能把各种陈述的可证伪度排列在一个标尺上,即把按照它们的可证伪度排列的数字同各种陈述相关起来?显然,我们不可能用这种方法把所有的陈述排列起来,因为,如果能够的话,我们就会随意地使得那些不可比的陈述成为可比的。但是,我们完全可以从网络中挑选出某个序列,用数字来表示该序列陈述的次序。这样做时,我们必须给离矛盾陈述c较近的陈述的数字,比给离重言陈述t较近的陈述高。由于我们已经分别以0和1赋予重言陈述和矛盾陈述,我们就必须以真分数赋予所挑选的序列中的经验陈述。
然而,我并不真正想挑选出某一个序列来。赋予这序列中的陈述以数字也是完全任意的。不过,可能给以分数这一事实有很大意义,特别是因为它说明了在可证伪度和概率观念之间的联系。每当我们能比较两个陈述的可证伪度时,我们就能说,可证伪度较小的陈述由于它的逻辑形式,也是概率较大的,这种概率我称为“逻辑概率”。不可把它和在博奕论和统计学中使用的数值概率相混淆。陈述的逻辑概率和它的可证伪度是互补的:它随可证伪度的减少而增加。逻辑概率1相当于可证伪度0,反过来也是如此。具有更可检验度的陈述,即具有更高可证伪度的陈述,是在逻辑上更少可几的陈述;而可检验性较差的陈述是在逻辑上更可几的陈述。(www.xing528.com)
在第72节中将看到,数值概率能和逻辑概率联结起来,因而也能和可证伪度联结起来。有可能把数值概率解释为适用于(从逻辑概率关系中挑选出来的)子系列的东西,可以在频率估计的基础上为这子系列规定一种测量系统。
这些对可证伪度比较的考察不仅适用于全称陈述或理论系统;它们也可推广应用于单称陈述。例如,它们适用于和初始条件合取的理论。在这种情况下,潜在证伪者类不可被误认为事件类——同型的基础陈述类——,因为它是偶发事件类(这点和将在第72节中分析的逻辑概率和数值概率之间的联系有某种关系)。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。